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Abstract—This article presents dynamic tiling optimization for
Polly compiler. It describes heuristic technique which can be
applied to increase efficiency of tiling optimization. Proposed
solution is based on open-source tools (LLVM and Polly compiler)
and it proves that dynamic tiling optimization can be achieved by
extraction code of tiled loop into seperate function. The compiler
can generate multiple versions of the optimzed functions. Each
of them is optimized by different tile size. The runtime decides
during program’s execution which optimized version of the given
function is the most appropriate.

Index Terms—Tiling optimization, compiler optimization, Polly
compiler, LLVM

I. INTRODUCTION

FROM the beginning of computer science there exists

a problem in speed differences between processors and

memories. Processors have usually higher frequencies than

memories containing data necessary for processor to perform

calculations and in result processors spend much time being

idle [1]. That is why they have really fast cache memory at

their disposal, however because of the cost of such memory

is pretty high, its amount is not sufficient. This problem is

more widely known as data locality problem and it is crucial

for high performance computing, especially during execution

of loops through significant amount of data. Nowadays this

problem is connected to phenomenon called cache memory

miss, which occurs when processor asks for further data and

it is not in cache memory. Then computer needs to retrieve

data from RAM memory, which is slower than processor speed

so from here we have this idle time of processors when they

are wasting time [2]. Obvious solution for that is to decrease

number of cache misses, so processor can operate without

obstacles and data loading from RAM will take place during

time when processor will be performing other tasks.

Many solutions and optimizations were proposed to min-

imize impact of data locality by decreasing cache misses,

one of such methods is called tiling. It derived from strip

mining transformation, which was invented in times of vector

processors. It takes an original loop from program and divides

it into smaller ones, called stripes, what on vector processors

allowed for vectorization of smaller loops but nowadays it hold

almost no improvement for execution speed of programs [3].

Tiling is utilizing the same idea but it is more suitable for

modern processors as it enables more possibilities for other

improvements and giving some gains on its own. Tiling usually

works on loop nests, transforming it into even larger loop nest

by adding additional loops to the inside of the nest, increasing
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loops number twice [4]. However, overall number of iterations

remain the same, they are just grouped differently, what

already can provide deacrease in cache memory misses [5].

Let’s take a look at simple loop nest:

for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){

Stmt(i,j);
}

}

This loop nest is transformed by tiling into more complex

form:

for(int Ti = 0; Ti < n; Ti += 64){
for(int Tj = 0; Tj < m; Tj += 64){

for(int i = Ti; i < min(Ti+63, n); i++){
for(int j = Tj; j < min(Tj+63,m); j++){

Stmt(i,j);
}

}
}

}

As it can be seen the number of iteration is exactly the

same but they happen in parts instead of iterating through

whole j loop and then starting next i loop iteration. Number

64 in these loops is called tile size and is very important for

efficiency of this optimization as it tries to limit amount of

data loaded to cache memory from RAM, so for one iteration

processor would have all data it needs to complete calculation,

without a need to load additional data. Unfortunately this

number have to be optimized for each computer, because many

processors are different from each other and have different

cache memory configurations.

II. STATE OF THE ART

Selection of optimal tile size is a complicated task. There

are many factors which should be taken into account. Optimal

tile size is dependent not only on target hardware (number of

cores, memory organization etc.) but also on source code [6].

It means that almost each loop under compilation should be

analysed separately. Moreover it is highly unlikely that there is

one optimal tile size of given loop for various target platform.

The aim of this section is to present state of the art for optimal

tile selection techniques.

A. Static analysis

This approach allows to find optimal tile size selection on

the basis of input source code analysis. Compiler tries to

find the most appropriate tile size during compilation. There

are several approaches. Some approaches tries to find the



most appropriate tile size on the basis of simplified cache

architecture [7]. Such solution can be successful for old

processors for which there is only one cache level. Unfor-

tunately, the new processors are equipped with multiple levels

of cache memory and their influence on overall performance

cannot be neglected. Another drawback of this approach is the

trade-off between compilation time and model accuracy. The

more complicated model the more time is needed for code

optimization [8].

Recent research has shown that analytical approach can be

used to limit the number of possible tile sizes which can be

further examined by empirical tests [6].

B. Dynamic methods

Dynamic search methods require special runtime which can

be used for optimal tile selection. Optimized program is run

with special runtime which tries to find the best tile size on the

basis of the previous execution results. This method does not

require any compilation time analysis. The weakness of this

approach lies in the large search space. Some heuristics have

been proposed to improve search speed, but their effectiveness

is limited and they can cause that the obtained result is

suboptimal [9].

C. Other approaches

Most projects are focused on rectangular shape of tile.

However, there are also some research which were focused

on different approaches to tiling optimization. It was proved,

hexagonal tile shaping can be beneficial [10].

D. Polly compiler

Polly compiler finds the regions of the code for which the

result of code execution is not dependent on the order of

executed instructions. Such regions of the code are defined

as Static Control Parts (SCoP). Code inside SCoP region

can be freely rearrange to maximize data locality. Possibility

of free rearrangement of executed statements enables tiling

optimization without any data hazard. Polly compiler can

perform tiling optimization, but the tile size should be given

before start of compilation process [11].

Such approach is not fully optimal. Optimal tile size selec-

tion is dependent not only on target processor architecture but

also on data accesses inside the SCoPs. Polly compiler does

not support parametric tiling. It only allows user to change

the default tile size before compilation process. Such approach

does not lead always to the best performance hence optimal

tile selection is dependent on target architecture and memory

calls inside the loops.

E. LLVM infrastructure

Proposed optimizer is working on LLVM IR code. LLVM

IR code is an intermediate internal language, which is used for

source code analysis and optimization. Its features, like single

static assignment rule, greatly expose data dependency and

program flow. Thanks to these features the code analysis and

optimization is easier than for source code written in high level

Fig. 1. Generation of function optimized with different tile size

Fig. 2. Execution of parametrically optimized functions

language [12], [13]. Polly compiler uses LLVM analysis and

transformation passes as the framework for its own analysis

and optimizations.

III. PROPOSED APPROACH

In authors’ opinion it is worth to focus on dynamic ap-

proaches of tiling optimization. This approach is more ver-

satile than static code analysis. The research was focused on

polyhedral code analysis. The main aim of the study was to

enhance the ability of Polly compiler by adding an option of

dynamic tile size selection.

A. Parametric tiling of the loop

Two approaches were examined. The first approach was

based on dynamic changes of tiled loop iteration ranges during

program execution. This approach requires that loops can be

parametrically tiled. The compiler needs to insert callbacks to

runtime before every SCoP region. The main aim of runtime

callbacks is to determine the execution of the proper tile size

during program. This approach allows to search the most

optimal tile size between wide range of possible values of tile

sizes. Process of insertion and adjusting tile size can be done

as one of optimization passes. Figure 1 illustrates this idea.

Compiler can parametrically tile loops which are ready for this

type of optimization and in the next step it inserts callbacks to

runtime. The executable program needs to be linked with the

runtime library. Figure 2 shows how tile size is chosen during

program execution. The main problem of this approach lies

in difficulty of parametric tiling. The research has shown that

Polly compiler does not support parametric tiling. The lack of

this feature has caused the second approach has been chosen

as a proof of concept of the thesis that parametric tiling can

have positive impact on code optimization.

B. Separately optimized functions

The second approach tries to omit the problem of mod-

ification of Polly compiler. It allows to quickly evaluate

if more sophisticated tiling optimization is beneficial. The

main simplification is that the optimized function is placed

in separate source file. All eligible for tiling loops in such

function will be optimized in the same way. Proposed approach

generates multiple versions of the optimized functions with



Fig. 3. Parametric loop tiling compilation process

Fig. 4. Parametrically tiled loop execution

different tile size. Compiler inserts special callbacks to the

runtime. Runtime routines decides on the basis of historical

data which optimized version of the code should be executed.

Figures 3 and 4 present the steps of optmization.

The drawback of this method is the limited range where

proposed approach can be applied. The functions which should

be optimized need to be placed in separate compilation unit.

Each unit should be optimized separately. The process of opti-

mization should be performed several times. There is trade-off

between number of optimized versions of the functions and the

size of binary code. Large number of optimized with different

tile size versions of the code allows to choose more appropriate

tile size. Unfortunately the large number of available versions

of the code prolongs the compilation time and it negatively

influences the size of binary code.

IV. DETAILED DESCRIPTION

This section provides the detailed description of the imple-

mented solution. It presents the major technologies used in

proposed optimizer. The strong and weak points of chosen

technologies are presented.

A. Data base

Statistical approach of finding the most appropriate tile size

requires a tool for storing results of previous optimization

attempts. The knowledge about the past optimization results

is required for choosing actual tile size. There is strong

probability that the tile size, for which the loop execution

was the fastest in the past, can be the most beneficial for

consecutive loop execution.

It was decided that the MySQL database should be used

for storing the results of previous optimization attempts. This

choice ensures high flexibility and it allows to store history of

optimization attempts connected with information about the

executed loop. This database can be used in further research

and verification of the most successful analytical model for

the best tile size prediction.

The runtime functions invoke SQL commands to save

information about performance of optimized SCoP. Runtime

will ask database for previous optimization results. It will need

it for making a decision for the most promising tile size.

Fig. 5. Runtime decision model

B. Insertion of runtime callbacks

New LLVM pass was implemented. The main role of this

pass was insertion of runtime callbacks into LLVM IR code.

This pass is launched after SCoP detection pass, because it

is dependent on the results of the SCoP analysis. New pass

operates on the whole translation unit. It inserts the runtime

callback after the last instruction before SCoP region and it

adds runtime callback before the first instruction after the

SCoP region.

C. Runtime execution

Runtime is responsible for recording time of tiled SCoP

execution. It uses PAPI library [14] for accurate measurement

of time execution. Runtime manages database and it chooses

the most appropriate tile size for upcoming SCoP. Current

version of runtime is only a prototype and it should be treated

as the base for further development. The runtime is entirely

written in C and it can be easily replaced by new one. Figure

5 presents high-level model of runtime execution.

V. TEST ENVIRONMENT

The proposed solution has been tested with Polybench 4.2.1

beta benchmark. This test suite consists of 30 benchmarks

which represent calculations typical for scientific calcula-

tions [15]. Tests were performed on Ryzen 5 1600 CPU

equipped with 16GB DDRAM4 memory. Its frequency was

equal to 2400MHz and the delay equals 14 CL. All bench-

marks were compiled by Clang + modified Polly compiler

(base version version 3.6). PAPI library was chosen for time

measurements. The time of runtime execution is not taken into

account, because current runtime is only proof of concept and

it should be heavily optimized.

VI. RESULTS

The efficiency of the proposed solution has been measured

by compiling and running benchmarks available in Polybench.

Firstly benchmarks were tested on small data set. The best tile

size was determined for each test case. Later, it was checked

if the most beneficial tile sizes for the small data set are also

beneficial for large data set. The results are summarized in

tables I and II. The final tile size column in tables I denotes

the tile size on which runtime algorithm has settled after N



= 40 executions of the test program. Every time result is an

average value over those measurements. Relative gain column

denotes the relative difference between number of clock cycles

needed for polybench item execution optimized with the best

and the worst tile size. The last column in table I denotes

the relative gain in execution speedup. The last column in

table II indicates measured relative slowdown between time of

execution of benchmark item optimized with tile chosen for

large data set and the tile size, which is the most beneficial

for small data set.

VII. CONCLUSIONS

Proposed solution proves that adjusting tile size can be

profitable. The optimization gain is strongly dependent on the

quality of optimization. If the runtime wrongly predict the tile

size then the optimization can strongly deteriorate the final

performance.

Proposed method of dynamic tiling requires initial set

of predefined tile sizes for which it is possible to choose

the most profitable tile size. The number of examined tiles

should be as wide as possible, because the large number of

examined tile sizes increases the chances of choosing the

tile size which is the closest to the ideal tile size. On the

other hand it is impossible to infinitely increase spectrum of

examined tile sizes, because it will cause that binary size of the

target application to be infinitely large. Currently there is no

implemented method of selection of the initial set of examined

tile sizes.

The same tile size was the most beneficial for the small

and the large data set for 17 of 28 (61%) test cases. It

shows that memory access patterns have more influence on

the tile size prediction in comparison to size of the iteration

space. Analysis of memory access patterns can be helpful for

determination of the most beneficial tile size, but it does not

allow to predict the optimization gain. The relative differences

between execution times for the worst and the best tile sizes

can be different for the large and for the small data sets.

Assumption, that tile sizes for small data sets are also the

most beneficial for large data sets, provides wrong results for

9 test cases (32% of all test cases). This group of test cases

is not homogeneous.There are minor performance differences

for 4 test cases (correlation, doitgen, syr2k and

trisolv) for small data set. The tile size chosen for these

items was slightly better then the next tile size. Unfortunately,

this correlation is not valid for the large data set. These

benchmarks show the need of improvement of tile selection

algorithm. The simple algorithm, which does not analyse ac-

cess patterns, might propose suboptimal tile size for increased

iteration domain.

There is relative small group of benchmark items for which

the tile size selection does not provide significant speedup. For

2 out of 28 (2mm and nussinov) test cases the optimization

performance is independent of tile size prediction and the

problem size.

TABLE I
AVERAGE CLOCK CYCLES FOR POLYBENCH BENCHMARKS

WITH SMALL DATASET

name tile size 32
[CLOCK
CYCLES]

tile size 16
[CLOCK
CYCLES]

tile size 8
[CLOCK
CYCLES]

final
tile
size

relative
time gain

[%]
2mm 881525 589053 844692 16 49.65
3mm 1504316 1560705 1551890 32 3.75
adi 11934455 10964840 10177789 8 17.26
atax 119318 117850 87604 8 36.20
bicg 99426 94854 87474 8 13.66
cholesky 862194 869092 872902 32 1.24
correlation 988328 881112 884135 16 12.17
covariance 783918 747161 1006149 16 34.66
deriche 935146 933036 931494 8 0.39
doitgen 1234980 1169767 1372282 16 17.31
durbin 44802 44669 44613 8 0.42
gemm 1030774 858323 590559 8 74.54
gemver 128544 138801 106560 8 30.26
gesummv 65189 84920 64148 8 32.38
gram-schmidt 989425 967511 1120346 16 15.80
heat-3d 4029962 4088840 4452858 32 10.49
jacobi-1d 45121 46507 43949 8 5.82
jacobi-2d 2306831 2417012 2678807 32 16.12
lu 1817723 1768361 1939395 16 9.67
ludcmp 1682192 1608699 1616065 16 4.57
mvt 115774 91873 82132 8 40.96
nussinov 3788688 3813246 3759383 8 0.78
seidel 19325449 17464029 13003843 8 48.61
symm 531234 531781 524385 8 1.41
syr2k 755692 742227 843606 16 13.66
syrk 699197 326774 579456 16 113.97
trisolv 35095 36591 35535 32 4.26
trmm 413051 419431 372811 8 12.50

TABLE II
AVERAGE CLOCK CYCLES FOR POLYBENCH BENCHMARKS

WITH LARGE DATASET

name tile size 32
[CLOCK
CYCLES
x 1000]

tile size 16
[CLOCK
CYCLES
x 1000]

tile size 8
[CLOCK
CYCLES
x 1000]

experi-
mental

tile
size

slow
down for
small data

tile [%]
2mm 5576752 4239220 4826810 16 0.00
3mm 9452857 9518995 9307992 8 1.56
adi 52577094 55136048 51750594 8 0.00
atax 35031 31083 36554 16 17.60
bicg 20659 16371 13467 8 0.00
cholesky 5073177 5040956 5058721 32 0.00
correlation 3404845 2557451 1830694 8 39.70
covariance 3381781 2144597 1796382 8 19.38
deriche 456036 434686 423838 8 0.00
doitgen 1563917 1862553 1636740 32 19.10
durbin 9365 9212 9204 8 0.00
gemm 4383883 3464819 2989667 8 0.00
gemver 66070 44697 43757 8 0.00
gesummv 15473 13716 8825 8 0.00
gram-schmidt 6635160 6630227 6572911 8 0.87
heat-3d 14804893 15051326 15774077 32 0.00
jacobi-1d 8808 8955 8385 8 0.00
jacobi-2d 5919404 6649292 7729609 32 0.00
ludcmp 12467337 12196215 12255536 16 0.00
lu 20410968 19940526 22373147 16 0.00
mvt 36449129 21663824 26985736 16 24.57
nussinov 14170793 14263003 14185980 32 0.11
seidel 70900022 64095754 46675213 8 0.00
symm 5649252 5680972 5564798 8 0.00
syr2k 2582038 3281677 2711786 32 27.10
syrk 2356186 1725509 866231 8 99.20
trisolv 8940 7122 8520 16 25.53
trmm 2092912 2058561 2044500 8 0.00



VIII. FURTHER IMPROVEMENTS

The runtime algorithm of the tile selection should be im-

proved. It should take into account more factors in comparison

to currently implemented. Polly compiler enables static code

analysis. The results of this analysis should be taken into

account during selection of the tile size. It is thought that more

input data should improve the quality of tile size prediction. It

should be especially profitable for the cases for which simple

mean algorithm does not provide valid results for the same

access patterns but different iteration domain.

Currently runtime overhead is not taken into account be-

cause the main aim of this research was to check new

opportunities of the tiling optimization. The next stages of

project development should include minimization of runtime

overhead. The database calls should be replaced by more

effective mechanism of asking for information about past loop

execution.

Limitations, which are connected with trade-off between

binary size of application and number of examined tile sizes,

can be eliminated by implementation of parametric tiling in

Polly. Polly should divide iteration space into multiple para-

metric tiles. The concrete size of the tile will be determined

by the runtime callbacks, which will be automatically inserted

by optimization passes. As a result, runtime could adjust tile

size during program execution instead of choosing the most

profitable tile size from predefined set. This approach allows

runtime to find the most optimal tile size from wide array

of promising solutions without increasing binary size of the

application.
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[11] T. Grosser, A. Größlinger, and C. Lengauer, “Polly - performing
polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 4, 2012. [Online]. Available:
https://doi.org/10.1142/S0129626412500107

[12] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[13] C. Lattner, “LLVM: An Infrastructure for Multi-Stage Optimization,”
Master’s thesis, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, Dec 2002, See
http://llvm.cs.uiuc.edu.

[14] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting perfor-
mance data with PAPI-C,” in Tools for High Performance Computing
2009, M. S. Müller, M. M. Resch, A. Schulz, and W. E. Nagel, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157–173.

[15] L.-N. Pouchet, “Polybench/C - the Polyhedral Benchmark suite,”
http://www.cse.ohio-state.edu/ pouchet/software/polybench/, accessed:
2017-09-14.

Dominik Adamski received BSc degree in Telecom-
munications and Computer Science in 2012 at In-
ternational Faculty of Engineering, Lodz University
of Technology, Poland. As for the master studies
in 2013 (also TUL), he focused on compiler con-
struction and source-to-source code transformation.
Currently he continues his research on PhD studies
in Department of Microelectronics and Computer
Science in TUL. He is working on effective code
optimization techniques.

Michał Szydłowski obtained his BSc degree in
Telecommunications and Computer Science at In-
ternational Faculty of Engineering, Lodz University
of Technology, Poland in 2014. For his master
studies, he has been working on the project ‘Au-
tomatic Adaptive Tile-Size Tuning for LLVM-Polly
Compiler’ and received MSc title in 2016. Since
his Bachelor degree, has also been working as a
software developer building scalable web services.
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