
The Application of High Level Synthesis
for Implementation of Lattice Boltzmann Method

in ARUZ
Grzegorz Jabłoński, and Joanna Kupis

Abstract—The paper presents the implementation results of
D2Q9 Lattice Boltzmann method on ARUZ, a massively parallel
FPGA-based simulator built in Lodz, Poland in 2015, optimized
for execution of the Dynamic Lattice Liquid algorithm. The
results of tests on a single ARUZ board indicate, that the LBM
simulation of 864 × 384 lattice on 18 panels of ARUZ would
reach the performance of 206 · 103 MLUPS (Million Lattice
Updates per Second).

Index Terms—Distributed System, Reconfigurable System,
FPGA, Lattice Boltzmann Method, ARUZ.

I. INTRODUCTION

ARUZ [1] (Analizator Rzeczywistych Układów

Złożonych, Analyser of Real Complex Systems) is

a massively parallel FPGA-based simulator located at Lodz

Technopark. This machine has been designed with a single

algorithm (Dynamic Lattice Liquid — DLL [2]) in mind

[3] [4]. No attempts so far have been made to extend an

applicability of the ARUZ hardware to solve more general

computing problems. This paper presents the results of

implementation of the Lattice Boltzmann method [5] on

ARUZ, including algorithm performance estimation.

II. THE ARUZ ARCHITECTURE

The ARUZ, commissioned in 2015 at Lodz Technopark,

comes as a result of close cooperation between the Department

of Molecular Physics and the Department of Microelectronics

and Computer Science, both from Lodz University of Tech-

nology complemented by a professional management expertise

of the Ericpol company. This supersimulator weights about 50

tons and is a cylinder 4.5 meters high and 16 meters wide,

placed in its own, dedicated, two-floor building. The machine

is composed out of 25920 Field Programmable Gate Arrays

(FPGAs), interconnected by 70 000 of twisted-pair cables,

totalling 100 kilometers in length and 6 tons in weight. Out

of 20 machine’s panels, 18 are usually engaged in ongoing

simulation, whereas remaining two are redundant used as a

standby in case of technical problems. Every panel consists of

12 rows, each containing 12 PCBs, called DBoards (Daughter

Boards) and is controlled by a dedicated rack-mounted PC. In

total, there are 144 DBoards in each panel, giving 2880 for

G. Jabłoński and J. Kupis are with the Department of Microelectronics
and Computer Science, Lodz University of Technology, Poland (e-mail:
gwj@dmcs.p.lodz.pl).

This work was supported by the Polish National Science Centre grant
2015/19/N/ST6/01191.

the whole machine. The overall ARUZ architecture is shown

in Figure 1.

Fig. 1. ARUZ overall structure

Each simulation board carries 9 FPGAs: 8 of them called

DSlaves (Artix XC7A200T), constitute the resources for ex-

ecution of the simulation algorithm and the remaining one

called DMaster (Zynq XC7Z015) manages the operation of

DSlaves. Each of DSlaves is equipped with the communi-

cation interfaces to the 8 closest neighboring FPGAs in a

3D simulation space (local communication) and implements a

grid of specialized processing cells, dedicated for performing

consecutive steps and complex calculations of a Dynamic

Lattice Liquid algorithm.

A. ARUZ – communication structure

The core element of every simulation performed by the

ARUZ machine is a communication between its FPGAs. Three

different kinds of communication, i.e. local, global and control,

may be distinguished and every one of them has its own

topology, purpose and dedicated protocol implementation.

• Global communication is 1 Gb Ethernet-based and used

for the data exchange between DMaster modules in

DBoards. It is responsible for configuring DSlaves, deter-

mining the current state of the whole system, initializing

simulation process and archiving its results. To reduce

cost, DMasters in every row of the panel are daisy-

chained and only the first board is connected to a PC

controlling given panel via an Ethernet switch.

• Control communication is exploited in synchronization

of every sequence of steps in DLL cells during the

simulation process. This communication is based on two

groups of signal lines i.e. command and state lines. State

lines help in determining in which stage the simulation

process is. Depending on a state information, commands

are issued for every DLL cell in the system. The simula-

tion management is organized in a hierarchical way — a

single MBoard controls up to 20 CBoards, one per panel,

which in turn control individual rows of DBoards.

Fig. 2. Cell interconnection structure within a single DBoard

• Local communication enables the dataflow between

DSlaves and the data exchange between DMaster and

DSlaves within one DBoard in order to initialize sim-

ulation cells and read their state during the simulation

process. Local communication is bi-directional, LVDS-

based and uses 1 GHz source-synchronous clock and a

single data line in each direction. It is used for communi-

cation between FPGAs placed on the same board, on the

same panel or on the neighboring panels. With respect

to local communication, DSlaves on every DBoard are

topologically organized in a 2x2x2 grid as shown in

Figure 2 and connected by differential PCB traces.

Apart from the connections internal to the board, every

DSlave has also serial connections to at most six neigh-

boring boards via Cat6 STP cables. These connections

lead to the board above, below, to the left, to the right,

at the next panel and at the previous panel. DSlave A is

always connected to DSlave A, DSlave B to DSlave B

etc. The entire ARUZ contains ca. 70000 such cables.

This interconnection network allows creating of 3D,

2D or 1D simulation grids of different sizes. For 2D

(a) Side view

(b) Top view

(c) Connections on single DBoard
and between DBoards - 1 × 8

(d) Connections on single DBoard
and between DBoards - 2 × 4

Fig. 3. 2D interconnection matrix on ARUZ

simulations, the interconnection structure with an aspect

ratio closest to one has the x-axis going along all the

panels in an accordion-folded way (see Figure 3(a-b)).

As a result, we have a matrix of 18 (panels) × 12

(board/panel) = 216 boards in the x axis and 12 boards

in the y axis. There are also different configurations

giving the same aspect ratio, the one above minimizes the

number of least-reliable long connections between panels.

The DSlaves on a single DBoard can be organized in

a few different ways, in a 1 × 8 (Figure 3(c)), 2 × 4

(Figure 3(d)), 4 × 2 or 1 × 8 grid.

III. THE LATTICE BOLTZMANN METHOD

The lattice Boltzmann method (LBM) was originally pro-

posed in 1988 by McNamara and Zanetti [5]. It is dedicated for

solving the Navier-Stokes equations describing fluid dynamics.

The method originates from the earlier lattice gas automata

model [6], but differs from its predecessor in operating at

mesoscopic level, i.e. by using distribution functions instead

of velocities of individual molecules.

The basis of the LBM is two- or three-dimensional regular

grid. Each of the grid nodes has several associated state

variables fi(�x, t). These variables constitute the density of

molecules at place �x and time t moving in direction �ci. There

are many variants of lattices applied in this model. The most

popular one for 2D simulations is the D2Q9 lattice presented

in Figure 4.

The molecule density and velocity at the given node can be

computed from fi(�x, t) using formulas

ρ(�x, t) =
∑
i

fi(�x, t), (1)

ρ(�x, t)�u(�x, t) =
∑
i

�cifi(�x, t) (2)

where ρ and �u denote molecule density and flow velocity,

respectively.

There are two main phases of the lattice Boltzmann algo-

rithm

• Streaming: the distribution functions fi are propagated

to the neighboring nodes in the direction �ci.
• Collision: The particles incoming from all directions to

a given node collide with one another, tending to an

equilibrium distribution with the relaxation constant τ .

The collision and propagation can be described by

fi(�x+ �ci, t+ 1) = (1− 1

τ
)fi(�x, t) +

1

τ
f
(0)
i (�x, t). (3)

The equilibrium distribution of particles f
(0)
i can be approx-

imated using [7]

f
(0)
i =

⎧⎪⎨
⎪⎩

4
9ρ[1− 3

2
�u2

c2] for i = 0
1
9ρ[1 + 3 �ci·�u

c2 + 9
2
(�ci·�u)2

c4 − 3
2
�u2

c2] for i = 1, 2, 3, 4
1
36ρ[1 + 3 �ci·�u

c2 + 9
2
(�ci·�u)2

c4 − 3
2
�u2

c2] for i = 5, 6, 7, 8
(4)

where c represents a speed of sound (1√
3

).

The macroscopic quantities ρ and �u in equation (4) can be

computed from the distribution functions fi using equations

(1) and (2).

Special considerations are required for boundary conditions.

The simplest one is the non-slip condition with zero velocity

at the wall. Frequently a half-way bounce-back condition is

applied [8]. Description of the pressure and velocity boundary

condition can be found in [9].

The lattice Boltzmann method operates locally in the colli-

sion phase and requires sending a single floating point value

of a distribution function to each of the neighboring nodes

Fig. 4. The D2Q9 lattice

Fig. 5. Data exchange between neighbouring FPGAs

during the streaming phase therefore it fits perfectly to the

architecture of ARUZ.

Figure 6 presents the results of the example simulation using

the D2Q9 variant of the lattice Boltzmann method, with the

non-slip walls at the top and bottom and the density boundary

condition (ρ = 0.8) on the left and right side. There are also

two vertical obstacles at grid point 140 and 360. At time 0 the

density on the left side changes from 0.8 to 1 to force flow

in the horizontal direction. The half-grid boundary conditions

are applied at the non-slip walls.

IV. FPGA IMPLEMENTATION OF THE LBM ALGORITHM

The FPGA-based implementation of LBM using multiple

FPGAs can be found in [10], [11] and [12]. As opposed to

ARUZ, this architecture is not massively parallel - it uses at

most 4 FPGAs located on the PCIe add-on cards.

To implement a simulation from the previous chapter seven

separate collision operators are needed: one for the interior

of the domain, two for the left and right edge, respectively

and four for corners. The function implementing the collision

operator has been written in C and is presented in Appendix 1.

The part of the code for the domain interior has been taken

(a) Step 30 (b) Step 150

(c) Step 300 (d) Step 500

(e) Step 1000 (f) Step 2000

(g) Step 3000 (h) Step 10000

Fig. 6. Example fluid flow simulation on 864 × 384 lattice at 8 different time steps (performed on a PC). Arrow size and direction - fluid velocity, arrow
color - fluid density.

from [10], it has been complemented with the necessary

boundary conditions and used for the simulation on a PC to

obtain the results presented in Figure 6.

The non-slip boundary conditions should be implemented

in the streaming phase and require the collision operator for

the interior of the domain.

In order to estimate the simulation performance on ARUZ

the LBM collision function for the domain interior and all

the boundary conditions has been synthesized in the Vivado

HLS 2016.4 environment using 8 ns cycle time as the input

constraint. The synthesizer estimations for all the function

variants are presented in Table I.

TABLE I
SYNTHESIS RESULTS FOR DIFFERENT LBM COLLISION FUNCTION

Bulk
Bott

om
-L

eft
Cor

ner

Top
-L

eft
Cor

ner

Top
-R

igh
t Cor

ner

Bott
om

-R
igh

t Cor
ner

Left
Edge

Righ
t Edge

Clock
period
[ns]

7.49 7.49 7.49 7.49 7.49 8.27 8.27

Latency
[cycles]

63 43 43 43 43 84 84

DSP48E
Slices

42
(5.7%)

30
(4.1%)

30
(4.1%)

30
(4.1%)

30
(4.1%)

27
(3.7%)

27
(3.7%)

Flip-
flops

4615
(1.8%)

3406
(1.3%)

3406
(1.3%)

3406
(1.3%)

3406
(1.3%)

3752
(1.4%)

3752
(1.4%)

LUTs 5247
(4.1%)

3525
(2.8%)

3525
(2.8%)

3525
(2.8%)

3525
(2.8%)

4106
(3.2%)

4042
(3.2%)

Possible
instances

17 25 25 25 27 27 27

From these results one can estimate that every FPGA can

fit at least 16 nodes. If these nodes are arranged in a matrix 4

nodes wide and 4 nodes high, the 18 panels of ARUZ are able

to simulate a domain of (4 (nodes/FPGA) × 1 (FPGA/board)

× 12 (boards/panel) × 18 (panels)) × (4 (nodes/FPGA) × 8

(FPGAs/board) × 12 (boards/panel), i.e. 864 × 384 nodes.

For 16 nodes arranged in a 4 × 4 matrix (Figure 5), the

following cells of the central FPGA must transfer a distribution

function value over link A during the LBM streaming phase:

cell 1 to 5, 2 to 6, 3 to 7, 4 to 8, 1 to 6, 2 to 7, 3 to 8, 4 to

7, 3 to 6, 2 to 5 and, indirectly, 4 to 9. This gives 11 single-

precision floating point numbers, i.e. 352 bits. Subsequently,

one floating-point number must be transmitted over link B to

cell 9 (32 bits). Similar transmissions occur simultaneously

over 3 remaining links in upward, leftward and downward

direction.

Implementation of the LBM algorithm on ARUZ has not

presented any particular difficulties. The ARUZ firmware has

been written in such a way, that a lot of VHDL code and

supporting software could be reused. The practical implemen-

tation required adding a relatively simple finite state machine

to the matrix of the synthesized collision function modules

and connecting them to the existing communication modules.

The firmware of DMasters did not require any changes.

The physical synthesis results in Vivado 2017.2 have shown,

that the Vivado HLS estimations were too pessimistic, as

the clock rate of 125 MHz could be applied. The VHDL

simulation of the 2 × 2 matrix of DSlaves has indicated,

that a single computation cycle takes 1608 ns. The resource

utilisation report is presented in Table II. It indicates, that the

number of available DSP modules is limiting the number of

nodes that can be implemented in a single FPGA.

We obtain exactly the same length of a single computation

cycle as previously estimated in [13]. The overestimation

of achievable clock cycle has been, by coincidence, exactly

compensated by the underestimation of protocol overhead. In

effect, the entire machine is able to perform computations with

a throughput of (864 × 384) / 1608 ns = 206 · 103 MLUPS

(Million Lattice Updates per Second, [14]). Paper [11] gives

360 × 180/0.0164 s = 3.95 MLUPS. Thus, the performance

of ARUZ would be 52 · 103 times better. The comparison to

[12] cannot be done directly, as the authors do not provide

such a figure of merit.

TABLE II
RESOURCE UTILISATION REPORT FOR DSLAVE

Site Type Used Available Util%
Slice LUTs 83791 134600 62.25

LUT as Logic 83283 134600 61.87

LUT as Memory 508 46200 1.10

LUT as Distributed RAM 0

LUT as Shift Register 508

Slice Registers 77926 269200 28.95

Register as Flip Flop 77926 269200 28.95

Register as Latch 0 269200 0.00

F7 Muxes 254 67300 0.38

F8 Muxes 66 33650 0.20

DSP48E1 564 740 76.22

The simulation cycle length has been confirmed by practical

measurements of execution time of 109 LBM cycles in a

matrix of 2 × 2 DSlaves on a single DBoard (simulation

domain: 8 × 8 nodes). The algorithm is perfectly scalable,

however the entire ARUZ would exhibit slightly longer cycle

times due to higher signal delays on 4 m cables (about 20 ns).

The computation results obtained on a cluster of 4 FPGAs are

identical to the results obtained using a C++ implementation

on a PC.

V. CONCLUSION

The measurements on a single DBoard have shown, that

ARUZ implementation of the Lattice Boltzmann Method

would have the performance of 206 · 103 MLUPS, 52 · 103
times better than presented in [11]. What is important, these

computation are done in full IEEE single precision.

The results of automatic synthesis are still not optimal.

For example, the HLS tool uses full floating point cores to

perform multiplication by 2.0 or 0.5. These operations can

be performed much more effectively as they require only an

incrementation or decrementation of an exponent, however the

Vivado tool is not able to infer it automatically.

APPENDIX 1: THE COLLISION FUNCTION SOURCE CODE

void lbm_node(
float f0,
float f1,
float f2,
float f3,
float f4,
float f5,
float f6,
float f7,
float f8,

float *f0_out,
float *f1_out,
float *f2_out,
float *f3_out,
float *f4_out,
float *f5_out,
float *f6_out,
float *f7_out,
float *f8_out,
float omega,
float* energy,
float rho

) {

float rhoux;

float MC_tmp1 = f5 - f7;
float MC_tmp2 = f6 - f8;
float MC_tmp3 = f1 - f3;
float MC_tmp4 = f2 - f4;

float MC_tmp1mMC_tmp2 = MC_tmp1 - MC_tmp2;
float MC_tmp1pMC_tmp2 = MC_tmp1 + MC_tmp2;

#if BCTYPE==BC_BULK
rho = ((f0 + f1) + (f2 + f3)) +
((f4 + f5) + (f6 + f7)) + f8;

#endif

#if BCTYPE==BC_BOTTOMLEFT
f1 = f3;
MC_tmp3 = 0;
f2 = f4;
MC_tmp4 = 0;
f5 = f7;
MC_tmp1 = 0;
f6 = f8 = 0.5f *
(rho - (((f0 + f1) + (f2 + f3))
+ ((f4 + f5) + f7)));

MC_tmp2 = 0;
MC_tmp1mMC_tmp2 = 0;
MC_tmp1pMC_tmp2 = 0;

#endif

#if BCTYPE==BC_TOPLEFT
f4 = f2;
MC_tmp4 = 0;
f1 = f3;
MC_tmp3 = 0;
f8 = f6;
MC_tmp2 = 0;
f5 = f7 = 0.5f *
(rho - (((f0 + f1) + (f2 + f3))
+ ((f4 + f6) + f8)));

MC_tmp1 = 0;
MC_tmp1mMC_tmp2 = 0;
MC_tmp1pMC_tmp2 = 0;

#endif

#if BCTYPE==BC_TOPRIGHT
f3 = f1;
MC_tmp3 =0;
f4 = f2;
MC_tmp4 = 0;
f7 = f5;
MC_tmp1 = 0;
f6 = f8 = 0.5f *

(rho - (((f0 + f1) + (f2 + f3))
+ ((f4 + f5) + f7)));

MC_tmp2 = 0;
MC_tmp1mMC_tmp2 = 0;
MC_tmp1pMC_tmp2 = 0;

#endif

#if BCTYPE==BC_BOTTOMRIGHT
f2 = f4;
MC_tmp4 = 0;
f3 = f1;
MC_tmp3 = 0;
f6 = f8;
MC_tmp2 = 0;
f7 = f5 = 0.5f *
(rho-(((f0 + f1) + (f2 + f3))
+ ((f4 + f6) + f8)));

MC_tmp1 = 0;
MC_tmp1mMC_tmp2 = 0;
MC_tmp1pMC_tmp2 = 0;

#endif

#if BCTYPE==BC_LEFTDENSITY
rhoux = rho - ((((f0 + f4) + f2) +
((f3 + f3) + (f6 + f6)))
+ (f7 + f7));

MC_tmp3 = 2.0f / 3.0f * rhoux;
float MC_tmp7 = 1.0f / 6.0f * rhoux;
float MC_tmp8 = 1.0f / 2.0f * MC_tmp4;
f1 = f3 + MC_tmp3;
MC_tmp2 = -MC_tmp7 - MC_tmp8;
f8 = f6 - MC_tmp2;
MC_tmp1 = MC_tmp7 - MC_tmp8;
f5 = f7 + MC_tmp1;

MC_tmp1mMC_tmp2 = 0.5f * MC_tmp3;
MC_tmp1pMC_tmp2 = -MC_tmp4;

#endif

#if BCTYPE==BC_RIGHTDENSITY
rhoux = rho - ((((f0 + f4) + f2) +
((f1 + f1) + (f8 + f8)))
+ (f5 + f5));

MC_tmp3 = -2.0f / 3.0f * rhoux;
float MC_tmp7 = 1.0f / 6.0f * rhoux;
float MC_tmp8 = 1.0f / 2.0f * MC_tmp4;
f3 = f1 - MC_tmp3;
MC_tmp2 = MC_tmp7 - MC_tmp8;
f6 = f8 + MC_tmp2;
MC_tmp1 = -MC_tmp7 - MC_tmp8;
f7 = f5 - MC_tmp1;
MC_tmp1mMC_tmp2 = 0.5f * MC_tmp3;
MC_tmp1pMC_tmp2 = -MC_tmp4;

#endif

float one_rho = 1.0f / rho;

float rho_u = MC_tmp1mMC_tmp2 + MC_tmp3;
float rho_v = MC_tmp1pMC_tmp2 + MC_tmp4;
float MC_tmp5 = MC_tmp3 + MC_tmp4;
float MC_tmp6 = MC_tmp3 - MC_tmp4;
float rho_uPv = MC_tmp5 +
(MC_tmp1 + MC_tmp1);

float rho_uMv = MC_tmp6 -
(MC_tmp2 + MC_tmp2);

float rho_u_sqd = rho_u * rho_u;
float rho_v_sqd = rho_v * rho_v;
float the3rdTerm = rho_u_sqd + rho_v_sqd;
*energy = the3rdTerm;
float feq0 = 4.0f/9.0f * rho -
2.0f/3.0f * the3rdTerm) * one_rho;

float EQ_tmp1 = 1.0f/9.0f * rho;
float EQ_tmp2 = 1.0f/3.0f * rho_u;
float EQ_tmp3 = 1.0f/3.0f * rho_v;
float EQ_tmp4 = 1.0f/2.0f * rho_u_sqd;
float EQ_tmp5 = 1.0f/2.0f * rho_v_sqd;
float EQ_tmp6 = 1.0f/6.0f * the3rdTerm;
float EQ_tmp7 = (EQ_tmp4 - EQ_tmp6)
* one_rho;

float EQ_tmp8 = (EQ_tmp5 - EQ_tmp6)
* one_rho;

float EQ_tmp9 = EQ_tmp1 + EQ_tmp7;
float EQ_tmp10 = EQ_tmp1 + EQ_tmp8;
float feq1 = EQ_tmp9 + EQ_tmp2;
float feq3 = EQ_tmp9 - EQ_tmp2;
float feq2 = EQ_tmp10 + EQ_tmp3;
float feq4 = EQ_tmp10 - EQ_tmp3;

float EQ_tmp11 = 1.0f/36.0f * rho;
float EQ_tmp12 = 1.0f/12.0f * rho_uPv;
float EQ_tmp13 = 1.0f/12.0f * rho_uMv;
float EQ_tmp14 = 1.0f/8.0f *

(rho_uPv * rho_uPv);
float EQ_tmp15 = 1.0f/8.0f *

(rho_uMv * rho_uMv);
float EQ_tmp16 = 1.0f/24.0f * the3rdTerm;
float EQ_tmp17 = (EQ_tmp14 - EQ_tmp16)
* one_rho;

float EQ_tmp18 = (EQ_tmp15 - EQ_tmp16)
* one_rho;

float EQ_tmp19 = EQ_tmp11 + EQ_tmp17;
float EQ_tmp20 = EQ_tmp11 + EQ_tmp18;

float feq5 = EQ_tmp19 + EQ_tmp12;
float feq7 = EQ_tmp19 - EQ_tmp12;
float feq6 = EQ_tmp20 - EQ_tmp13;
float feq8 = EQ_tmp20 + EQ_tmp13;

float deltaf0 = (omega)*(f0 - feq0);
float deltaf1 = (omega)*(f1 - feq1);
float deltaf2 = (omega)*(f2 - feq2);
float deltaf3 = (omega)*(f3 - feq3);
float deltaf4 = (omega)*(f4 - feq4);
float deltaf5 = (omega)*(f5 - feq5);
float deltaf6 = (omega)*(f6 - feq6);
float deltaf7 = (omega)*(f7 - feq7);
float deltaf8 = (omega)*(f8 - feq8);

*f0_out = f0 - deltaf0;
*f1_out = f1 - deltaf1;
*f2_out = f2 - deltaf2;
*f3_out = f3 - deltaf3;
*f4_out = f4 - deltaf4;
*f5_out = f5 - deltaf5;
*f6_out = f6 - deltaf6;
*f7_out = f7 - deltaf7;
*f8_out = f8 - deltaf8;

}

REFERENCES

[1] R. Kiełbik, G. Jabłoński, P. Amrozik, Z. Mudza, and J. Kupis, “Aruz -
the unique massively parallel fpga-based system,” in Dedicated parallel
machines – a breakthrough in computation ARUZ-Workshop 2016, Lodz,
Poland, 1-3 December 2016, 2016, pp. 8–9.

[2] T. Pakuła and J. Teichmann, “Model for relaxation in supercooled
liquids and polymer melts,” in Materials Research Society Symposium
– Proceedings, Volume 455, 1996, p. 211.

[3] P. Polanowski, J. Jung, and R. Kielbik, “Special purpose parallel com-
puter for modelling supramolecular systems based on the dynamic lattice
liquid model,” Computational Methods in Science and Technology,
vol. 16, no. 2, pp. 147–153, 2010.

[4] K. Hałagan, P. Polanowski, J. Jung, and M. Kozanecki, “Modelling of
complex liquids with cooperative dynamics using aruz,” in Dedicated
parallel machines – a breakthrough in computation ARUZ-Workshop
2016, Lodz, Poland, 1-3 December 2016, 2016, pp. 10–11.

[5] G. R. McNamara and G. Zanetti, “Use of the boltzmann equation to
simulate lattice-gas automata,” Phys. Rev. Lett., vol. 61, pp. 2332–2335,
Nov 1988.

[6] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the
navier-stokes equation,” Phys. Rev. Lett., vol. 56, pp. 1505–1508, Apr
1986.

[7] D. A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltz-
mann models: an introduction. Springer, 2004.

[8] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond.
Oxford university press, 2001.

[9] Q. Zou and X. He, “On pressure and velocity boundary conditions for
the lattice boltzmann bgk model,” Physics of fluids, vol. 9, no. 6, pp.
1591–1598, 1997.

[10] K. Sano, O. Mencer, and W. Luk, “Fpga-based acceleration of the lattice
boltzmann method,” in Proceedings of the International Conference
on Parallel Computational Fluid Dynamics (ParCFD2007) CDROM
(paper-041), 2007.

[11] K. Sano, O. Pell, W. Luk, and S. Yamamoto, “Fpga-based streaming
computation for lattice boltzmann method,” in 2007 International Con-
ference on Field-Programmable Technology, ICFPT 2007, Kitakyushu,
Japan, December 12-14, 2007, 2007, pp. 233–236.

[12] K. Sano, Y. Kono, H. Suzuki, R. Chiba, R. Ito, T. Ueno, K. Koizumi,
and S. Yamamoto, “Efficient custom computing of fully-streamed lattice
boltzmann method on tightly-coupled fpga cluster,” SIGARCH Comput.
Archit. News, vol. 41, no. 5, pp. 47–52, Jun. 2014.

[13] G. Jabloński and J. Kupis, “Performance estimation of lattice boltzmann
method implementation in aruz,” in 2017 MIXDES - 24th International
Conference ”Mixed Design of Integrated Circuits and Systems, June
2017, pp. 308–313.

[14] A. G. Shet, S. H. Sorathiya, S. Krithivasan, A. M. Deshpande, B. Kaul,
S. D. Sherlekar, and S. Ansumali, “Data structure and movement for
lattice-based simulations,” Phys. Rev. E, vol. 88, p. 013314, Jul 2013.

Grzegorz Jabłoński was born in 1970. He received
MSc and PhD degrees in electrical engineering from
Lodz University of Technology in 1994 and 1999
respectively. He is currently an Assistant Professor
in the Department of Microelectronics and Com-
puter Science Lodz University of Technology. His
research interests include compiler construction, mi-
croelectronics, simulation of electronic circuits and
semiconductor devices, thermal problems in elec-
tronics, digital electronics, embedded systems and
programmable devices.

Joanna Kupis is a PhD student in the Department
of Microelectronics and Computer Science, Lodz
University of Technology.

