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Abstract—Concurrent systems appear natural and intuitive
solution for many real IT problems. However, designing a more
complex concurrent system is a difficult task. The main problem
is that for systems that have more than several subsystems it
becomes difficult to control their properties at the design stage.
Applications of formal methods in the development process may
remarkable reduce the problem. An important issue is to choose
a suitable formal modelling language, that supports the required
methods of communication between subsystems. The paper
provides a survey of communication modes introduced to the
Alvis modelling language and discusses how the communication
modes may be used while modelling concurrent systems.

Index Terms—Alvis language, communication modes, concur-
rent systems, real-time systems

I. INTRODUCTION

H IGH degree of concurrency makes a system more flex-

ible, but makes difficult its verification and valida-

tion. Standard techniques, such as peer reviewing or testing

are very often insufficient to guarantee the expected level

of software quality in case of concurrent systems. Formal

methods included into the design process may provide more

effective verification techniques, reduce the verification time

and system costs [1]. The key issue of concurrent systems

is communication among their components. Communication

makes subsystems mutually dependent and influences the

correctness of the whole system.

This is the reason why communication specification mech-

anism is one of the most important aspects that should be

considered when choosing a suitable formalism to model a

given system. Every one of the most popular formal modelling

languages provides such a mechanism, each having its own

strengths and weaknesses.

Petri nets [2], [3], [4] are the most popular group of formal

modelling languages. The very rich set of varieties of Petri

net classes allows user to choose the one that suites the

given problem. Petri nets do not provide specific concepts

for communication modelling but are flexible enough to al-

low to model wide range of concurrent systems behaviours.

Unfortunately, it requires a quite extensive training to achieve

decent skills in using it. Moreover, Petri net models are

usually very large (for more complex systems) and illegible

for inexperienced users. This effectively blocks incorporating

Petri nets in the standard software development process.

The second popular group of formal languages are process

algebras. The most popular languages of this group are CCS
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(Calculus of Communicating Systems, [5], [6]), CSP (Commu-

nicating Sequential Processes, [7], [8]) and LOTOS [9]. In case

of CCS and CSP calculus the synchronous communication

(handshaking) between processes is considered. Processes

performing the same actions are treated as communicating

with each other. Although this approach is relatively simple

to apply, it requires a certain amount of discipline on the part

of the designer to implement. It is easy to communicate some

parts of the system unintentionally. The problem is becoming

a serious risk, especially when modelling complex systems.

In LOTOS communication is purely synchronous. Processes

interact with each other using a concept known as gates. Even

though there were attempts to add asynchronous composition

to this formal language [10], the main problem with LOTOS

process specification is that it is hard to understand not only for

the beginners but even intermediate users. Therefore, LOTOS

is not likely to be popularised among software developers.

Another popular formalism is time automata [11]. Complex

concurrent systems are modelled as a product of timed au-

tomata. Parallel execution is based on synchronous execution

of actions with the same labels attached.

Considering all the above, the Alvis language [12], [13],

[14] seems to be a good alternative. It is formal, yet it

has a concise syntax which resembles procedural languages.

It supports synchronous and asynchronous communication

schemes out of the box. Moreover, Alvis is not only focused on

communicational part of concurrent system but also provides

tools to express processing aspects of a program execution.

Compared with the other formal languages, it includes the

syntax that is more user-friendly from engineers’ point of view,

and the practical visual modelling language [14] used to define

communication between concurrent subsystems.

The paper discusses communication modes supported by

the current version of the Alvis language. This is an extended

version of the conference paper [15]. The paper is organised

as follows. Section II provides basic information about the

language and tools. Section III deals with selected aspects of

models semantics. Survey of communication modes is studied

in Section IV. A short summary is given in the final section.

II. ALVIS LANGUAGE AND TOOLS

The key notion of Alvis is the concept of agent borrowed

from CCS [5], [16] that denotes a distinguished part of the

system with its own state. An Alvis model is a system

of agents that usually run concurrently, communicate one

with another, compete for shared resources etc. Agents are

divided into active and passive ones and mimic, to some

degree, tasks and protected objects in the Ada programming
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• delay t;
• exec x = expression;
• exit;
• in p x;
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success {...}
fail {...} }
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Figure 2. Modelling and verification process with Alvis

language [17]. Active agents may perform some activities and

are treated as threads of control in a concurrent system. Passive
agents provide a mechanism for the mutual exclusion and data

synchronization. Each agent may be equipped with a set of

ports used to communicate with other agents. Communication

channels must be defined explicitly and connect two ports

belonging to two agents. From the point of view of the control

and data flow, an Alvis model structure is represented as a di-

rected graph whose nodes may represent both kinds of agents,

and edges represent communication channels. Moreover, to

cope with complex systems a hierarchical communication

diagram can be used [14]. In such a case, a node (called

hierarchical agent) represents a subsystem described in details

at the lower level. Behaviour of each active and passive agent

is defined using a few Alvis statements supported by the

Haskell functional programming language [18]. A survey of

Alvis graphical components and code statements is given in

Fig. 1. For more details see the manual at the project website

(http://alvis.kis.agh.edu.pl).

The Alvis language is supported by a modelling and veri-

fication environment composed of editor and compiler. Alvis
Editor provides the following functionality: basic hierarchy

editor/viewer, visual diagram editing, textual editor with syn-

tax highlighting, code folding and code completion. A screen-

shot of the editor is shown in Fig. 3. Alvis Compiler is used

to translate the XML file into its Haskell representation. This

Haskell middle-stage representation is a complete program that

may be used to generate the LTS graph (labelled transition
system) or to simulate the model behaviour.

Alvis LTS graphs can be verified using external tools

supporting model checking techniques [1]. The current version

of the tools cooperates with the CADP toolbox [19] and

nuXmv tool [20], [21]. The former approach is action ori-

ented and model properties are specified using the μ-calculus

formulas [22]. The latter approach is states oriented and model

properties are specified using the LTL and CTL temporal

logics [23]. The scheme of modelling and verification process

with Alvis is shown in Fig. 2.



Figure 3. Alvis Editor

III. MODEL SEMANTICS

A state of an Alvis model is represented as a list of states

of its active and passive agents. A state of an agent is a four-

tuple (agent’s mode, program counter, context information list,

values of parameters). The four-tuple contains all necessary

information to describe an agent state unambiguously.

For active agents the agent’s mode takes one of the fol-

lowing values: init (I) – the default mode for agents that

are inactive in the initial state, running (X) – an agent is

performing one of its steps (statements), waiting (W) – an

agent is waiting for an event, e.g. for a communication with

another active agent, or for a currently inaccessible procedure

of a passive agent, finished (F) – an agent has finished its

work. For passive agents the mode takes one of the two values,

waiting (W) – an agent is inactive and waits for another agent

to call one of its accessible procedures, or taken (T) – one of

the passive agent’s procedures has been called and the agent

is executing it.

The program counter points at the next statement to be

executed or the statement that has been already executed but

to be completed, it needs a feedback from another agent (e.g.

a communication between agents). For active agents in the init
or finished mode and for passive agents in the waiting mode,

the program counter is equal to 0.

The context information list contains additional information

about the current state. Some of possible entries are given in

Table I. The parameters values list contains the current values

of the agent parameters.

An example of a very simple Alvis model is given in Fig. 4.

The model contains two agents. Agent A sends signals (in a

loop) via port a and agent B collects the signals via port b. The

comments contain numbers of steps (statements). Execution of

any language statement is expressed as a transition between

formally defined states. All reachable states and transitions

between them are represented using an LTS graph. Nodes of

TABLE I
CONTEXT INFORMATION LIST ENTRIES

Entry Description
in(a) input procedure X.a is accessible (for passive agents in

waiting mode)
in(a) X waits for finalization of a communication via port

X.a (X.a is the input port for this communication)
out(a) output procedure X.a is accessible (for passive agents

in waiting mode)
out(a) X waits for finalization of a communication via port

X.a (X.a is the output port for this communication)
proc(Y.b) X has called the Y.b procedure and this procedure is

being executed in the X agent context
timeout(s) a timer signal for the statement number s has been

generated and waits for serving
timer(s, n) a timer signal for the statement number s will be

generated in n time-units
sft(n) the current step needs n time-units to be finished

agent A {
loop { -- 1
out a; -- 2

}
}

agent B {
loop { -- 1
in b; -- 2

}
}

Figure 4. Example of simple Alvis model

such a graph represent reachable states of the given model.

In case of non-time models edges are labelled with single

statements (see Fig. 5). In case of time models edges are

labelled with a set of simultaneously executed statements.

Moreover, they label provides information about the passage

of time (see Fig. 6).



(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())
B: (X,1,[],())

loop(A)

(2)
A: (X,1,[],())
B: (X,2,[],())

loop(B)

(3)
A: (W,2,[out(a)],())

B: (X,1,[],())

out(A.a)

(4)
A: (X,2,[],())
B: (X,2,[],())

loop(B) loop(A)

(5)
A: (X,1,[],())

B: (W,2,[in(b)],())

in(B.b)

(6)
A: (W,2,[out(a)],())

B: (X,2,[],())

loop(B) out(A.a)

(7)
A: (X,2,[],())

B: (W,2,[in(b)],())

in(B.b) loop(A)

in(B.b) out(A.a)

Figure 5. LTS for model from Fig. 4

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())
B: (X,2,[],())

{loop(A),loop(B)}/1

(2)
A: (W,2,[out(a)],())
B: (X,2,[sft(1)],())

{out(A.a),in(B.b)}/2

{in(B.b)}/1

Figure 6. LTS for model from Fig. 4 (time version)

IV. COMMUNICATION

Communication modes in Alvis can be grouped according to

various criteria. First of all, we can distinguish communication

between two active agents and communication with a passive

agent (the second side of such a communication may be both

active or passive agent). When two active agents communicate

with each other, they synchronise their execution. It is required

for both agents to reach an appropriate state to be able to

execute communication protocol. In the case of a communi-

cation with a passive agent, the communication is treated as

a procedure call. The passive agent performs a service for the

second agent using its context.

On the other hand, any communication may be a pure
communication or a value passing communication. In case

of a pure communication, a signal (without specified value)

is sent between agents, while in case of a value passing

communication, a value is sent. The value can be a composed

type. The only difference between these communication modes

is the new state of the agent that collects the value/signal.

In the case of a value passing communication, value of

one agent’s parameter is updated. In the following part, we

will focus on the pure communication only. Nevertheless, all

presented concepts and remarks can also be applied to the

value passing communication.

Finally, any communication may be a blocking or non-
blocking one. In the instance of blocking communication,

the agent that initiates the communication waits until another

agent finalises it. On the other hand, when a non-blocking

communication is used, the agent that initiates the communi-

cation may abandon it when the second side is not ready to

finalise it within the given period of time.

In the following paragraphs all communication modes and

popular constructs will be explained on abstract examples.

A. Blocking communication between active agents

Let us focus on a blocking communication between two ac-

tive agents. Alvis uses two statements for the communication.

The in statement for receiving data and out for sending. Each

of them takes a port name as its first argument and optionally

a parameter name as the second. Parameters are not used

for the pure communication (value passing communication is

presented in subsection IV-F). Let us focus on the example

shown in Fig. 4. A communication between two active agents

may be initiated by any of them. The agent that initiates

it, performs the out statement to provide some information

and waits for the second agent to take it, or performs the in
statement to express its readiness to collect some information

and waits until the second agent provides it.

Let us focus on state 4 shown in Fig. 5. Both considered

agents are ready to initiate a communication between them.

The A agent initiates the communication by performing the

out statement. As the result of this action, A moves to

the waiting mode and its context list contains information

about the port involved in the communication. The A agent

remains in the waiting mode until another agent finalises the

communication.

Alvis agents do not know the partners with which they

communicate. Thus, the communication may be finalised by

any agent connected with port A.a that may collect a valueless

signal or value of the suitable type in case of value passing

communication. In the considered example agent B is the

only one connected with the A.a port and ready to finalise

the communication. The edge from state 6 to 0 represents the

result of performing the in statement by agent B.

The result of communication between these two agents is

the same when the agent B initiates the communication (in
statement between states 4 and 7) and the agent A finalises it

(out statement between states 7 and 0).

B. Blocking communication between active and passive agent

Passive agents are used to store data shared among agents

and to avoid the simultaneous use of such data by two or more

agents. They provide a set of procedures that can be called

by other agents. Each procedure has its own port attached

and a communication with a passive agent via that port is

treated as the corresponding procedure call. Depending on the

communication direction, such a procedure may be used to

send or collect some data from the passive agent. Moreover, a

passive agent may also contain internal non-procedure ports.

Such ports are connected with another passive agents and

are used to call other procedures inside procedures of the

considered agent.

Communication between active and passive agents is ex-

plained on model presented in Fig. 7 (an LTS graph for this



agent A {
out a; -- 1

}

agent B {
proc b {
in b; -- 1
exit; -- 2

}
}

Figure 7. Communication between active and passive agent

(0)
A: (X,1,[],())

B: (W,0,[in(b)],())

(1)
A: (X,1,[proc(B.b)],())

B: (T,1,[],())

out(A.a)

(2)
A: (X,1,[proc(B.b)],())

B: (T,2,[],())

in(B.b)

(3)
A: (F,0,[],())

B: (W,0,[in(b)],())

exit(B)

Figure 8. Communication between active and passive agent – LTS

model is shown in Fig. 8). Such a communication must be

initiated by the active agent and is treated as a procedure

(service) call. Let us focus on state 0. The passive agent B
is in waiting mode and its context information list contains

the list of procedures accessible in the current state. Agent A
calls the a procedure using its out statement. This moves the

system to state 1, where the B.b procedure is executed in A
context (B mode is taken , and A contains B.b in its context

information list).

A passive agent that has been taken is unavailable for all

other agents. Even if it has more procedural ports, all of

them are inaccessible. By definition only one active agent is

allowed to operate “inside” a passive one. In the next step,

the first statement of the passive agent is executed. Then

communication is finished by performing exit(B) statement.

The agent B returns to the waiting mode and b is back on

the list of accessible procedures.

Generally, all communication mechanisms are analogical to

the ones between two active agents. The main difference is

“communication readiness” of a passive agent. It is willing to

communicate when it is in the waiting mode and a given port

is on the list of accessible procedures. Although it has not

been shown in the presented example, in general, if a passive

agent has more than one port, not all of them might be ready

for communication at a given state. User has a possibility to

associate guards (logical expressions) with ports to limit their

accessibility.

C. Non-blocking communication

In case of a non-blocking communication, the communi-

cation may be abandoned if the second agent is not ready

to finalise it. The in and out statements for non-blocking

communication contain additional parameter that represents

how long the corresponding agent may wait for finalisation

of the communication. In case of non-time Alvis models, the

time parameter is always treated as 0. Thus, for a non-timed

model, a non-blocking communication may be used to finalise

the communication only.

Let us consider the model structure from Fig. 4 with the

following code layer:

agent A { agent B {
out (0) a; -- 1 in b; -- 1

} }

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (F,0,[],())
B: (X,1,[],())

out(A.a)

(2)
A: (X,1,[],())

B: (W,1,[in(b)],())

in(B.b)

(3)
A: (F,0,[],())

B: (W,1,[in(b)],())

in(B.b)

(4)
A: (F,0,[],())
B: (F,0,[],())

out(A.a)

Figure 9. Model with a non-blocking communication – LTS graph

The parameter 0 in the out statement means that agent A
cannot wait for finalisation of the communication – communi-

cation must be finalised immediately or is abandoned. In other

words, if this statement does not finalise the communication,

agent A abandons it and executes further statements. In our

example, executing of the out statement in state 0 from Fig. 9

leads to state 1, where agent A is already in the finish
mode and the communication between A and B will never be

finalised. On the other hand, if agent B has already initiated a

communication (state 2), agent A can finalise it (state 4). The

non-blocking in statement works similarly.

D. Non-blocking communication in timed model

Let us consider the model structure from Fig. 4 with the

following code layer:

agent A { agent B {
null; -- 1 null; -- 1
out (3) a; -- 2 in b; -- 2

} }

If we consider models with time, the first argument of

a non-blocking communication statement denotes how long

the corresponding agent may wait for the finalisation of the

communication.

Suppose, that duration of all statements is equal to 1 except

the null(A) statement that lasts 3 time-units. Thus, the B
agent will finish its in statement before A will start its out
statement (see Fig. 10a). This time the out statement finalises

the communication immediately.



(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,1,[sft(2)],())

B: (X,2,[],())

{null(A),null(B)}/1

(2)
A: (X,1,[sft(1)],())
B: (W,2,[in(b)],())

{null(A),in(B.b)}/1

(3)
A: (X,2,[],())

B: (W,2,[in(b)],())

{null(A)}/1

(4)
A: (F,0,[],())
B: (F,0,[],())

{out(A.a)}/1

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())

B: (X,1,[sft(2)],())

{null(A),null(B)}/1

(2)
A: (W,2,[out(a),timer(2,3)],())

B: (X,1,[sft(1)],())

{out(A.a),null(B)}/1

(3)
A: (W,2,[out(a),timer(2,2)],())

B: (X,2,[],())

{null(B)}/1

(4)
A: (F,0,[],())
B: (F,0,[],())

{in(B.b)}/1

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())

B: (X,1,[sft(5)],())

{null(A),null(B)}/1

(2)
A: (W,2,[out(a),timer(2,3)],())

B: (X,1,[sft(4)],())

{out(A.a),null(B)}/1

(3)
A: (W,2,[out(a),timeout(2)],())

B: (X,1,[sft(1)],())

{null(B)}/3

(4)
A: (F,0,[],())

B: (X,1,[sft(1)],())

{timeout(A),null(B)}/0

(5)
A: (F,0,[],())
B: (X,2,[],())

{null(B)}/1

(6)
A: (F,0,[],())

B: (W,2,[in(b)],())

{in(B.b)}/1

a) b) c)

Figure 10. Three variants of the LTS graph of the considered timed model
depending on the duration of individual statements

Assume now that the null(B) statement lasts 3 time-units

and other statements last 1 time-unit. After executing the out
statement A moves to the waiting mode (see Fig. 10b) and

waits no more than 3 time-units for another agent to finalise the

communication (more precisely, to start finalising). This time

agent B manages to finalise the communication before the

deadline. If the null(B) statement lasts 6 time-units, no agent

finalises the communication, it is abandoned and A performs

its further statements if any (see Fig. 10c).

E. Fail and Success clause in non-blocking communication

The in and out non-blocking statements may be equipped

with success and fail clauses (both are optional). The success
clause is executed upon successful communication, while

the fail clause is executed, if the communication has been

abandoned. Let us consider the model structure from Fig. 4

with the following code layer:

agent A { agent B {
out (0) a{ -- 1 in b; -- 1

fail {out (0) a;} -- 2 }
}

}

The effect of addition the fail clause is visible in Fig. 11.

Agent A instead of abandoning efforts to send signal to agent

B after the first failure (state 1) is trying to send it once again.

This gives agent B opportunity to initiate the communication

(state 4) and the communication to be finalised (state 5).

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())
B: (X,1,[],())

out(A.a)

(2)
A: (X,1,[],())

B: (W,1,[in(b)],())

in(B.b)

(3)
A: (F,0,[],())
B: (X,1,[],())

out(A.a)

(4)
A: (X,2,[],())

B: (W,1,[in(b)],())

in(B.b)

(5)
A: (F,0,[],())
B: (F,0,[],())

out(A.a)

(6)
A: (F,0,[],())

B: (W,1,[in(b)],())

in(B.b) out(A.a)

Figure 11. Result of application of a fail clause – LTS

F. Value passing communication

All models presented in this section so far were examples

of pure communication that means they did not send values

of any type, just signals. Such choice was not enforced by

the limitation of the language but by the need of model

simplicity, which would allow to focus on specific aspects

of communication. Every one of these models could use a

value passing mode instead. There is no significant difference

between these two modes other than the fact that model

designer has to remember about ensuring the values sent and

received are of the same type. The Alvis language offers a

number of data types that can be used during the modelling.

The list of selected, basic Haskell types recommended to be

used in Alvis is as follows:

• Char – Unicode characters.

• Bool – Values in Boolean logic (True and False).

• Int – Fixed-width integer values – The exact range of

values represented as Int depends on the system’s longest

native integer.

• Double – Float-point numbers typically 64 bits wide and

uses the system’s native floating-point representation.

The basic types can be combined into the composite data

types. The most common ones are lists and tuples. A list is

a sequence of elements of the same type, with the elements

being enclosed in square brackets and separated by commas.

A tuple, on the other hand, is a sequence of elements of

possibly different types, with the elements being enclosed in

parentheses and separated by commas. There is also a String
data type, which is in fact a list of Char values.

Let us once again consider the model structure from Fig. 4

with the following code layer:

agent A { agent B {
v :: Int = 1; v :: Int = 0;
out (0) a v; -- 1 in b v; -- 1

} }

The first line of both agent blocks contains a declaration of

the v parameter of type Int with its initial value. Declarations

of the parameters are not a part of the agent body and are not

regarded as statements by the program counter. The result of



using value passing communication is shown in Fig. 12. In

case of successful finalisation of the communication between

the agents (state 4), the v parameter of agent B changes value

from 0 to 1.

(0)
A: (X,1,[],1)
B: (X,1,[],0)

(1)
A: (F,0,[],1)
B: (X,1,[],0)

out(A.a)

(2)
A: (X,1,[],1)

B: (W,1,[in(b)],0)

in(B.b)

(3)
A: (F,0,[],1)

B: (W,1,[in(b)],0)

in(B.b)

(4)
A: (F,0,[],1)
B: (F,0,[],1)

out(A.a)

Figure 12. Result of application of value passing communication – LTS

G. Indeterminism in communication

Let us consider the example presented in Fig. 13 and its LTS

graph shown in Fig. 14. In the given example agents A1 and

A2 have identical behaviour specifications. In Alvis language

it is possible to share one definition among a few agents and

describe multiple agents in a single agent block. In such a

case, a few agents’ names are placed after the keyword agent

separated by commas.

agent A1, A2 { agent B {
out a; -- 1 in b; -- 1

} }

Figure 13. Example of indeterminism in communication

Let us focus on the state 3 of the LTS graph. Agent B is

waiting after execution of a blocking in statement. Because

both A1 and A2 agents are ready to finalise the communication

the system behaviour is indeterministic. The signal provided

by the B agent can be collected by either A1 or A2 (see states

5 and 6).

To eliminate indeterminism, priorities are being introduced

into Alvis [24]. The basic concept is based on a simple

principle of selecting for execution an agent with the highest

priority. Therefore, user is able to determine which agents

should be winning data races. One of the latest enhancements

introduced in the Alvis language is the possibility to apply

custom, user-defined priority management algorithms.

Moreover, Alvis allows to introduce fairness. Considering

the latest example, to achieve fairness in providing data from

both A agents system should be redesigned. One of the most

(0)
A1: (X,1,[],())
A2: (X,1,[],())
B: (X,1,[],())

(1)
A1: (W,1,[out(a)],())

A2: (X,1,[],())
B: (X,1,[],())

out(A1.a)

(2)
A1: (X,1,[],())

A2: (W,1,[out(a)],())
B: (X,1,[],())

out(A2.a)

(3)
A1: (X,1,[],())
A2: (X,1,[],())

B: (W,1,[in(b)],())

in(B.b)

(4)
A1: (W,1,[out(a)],())
A2: (W,1,[out(a)],())

B: (X,1,[],())

out(A2.a)

(5)
A1: (F,0,[],())
A2: (X,1,[],())
B: (F,0,[],())

in(B.b) out(A1.a)

(6)
A1: (X,1,[],())
A2: (F,0,[],())
B: (F,0,[],())

in(B.b)out(A1.a) out(A2.a)

(7)
A1: (F,0,[],())

A2: (W,1,[out(a)],())
B: (F,0,[],())

in(B.b)

(8)
A1: (W,1,[out(a)],())

A2: (F,0,[],())
B: (F,0,[],())

in(B.b)out(A2.a) out(A1.a)

Figure 14. Indeterminism in communication – LTS

obvious solutions is to equip B with dedicated ports for

receiving data from all providers. Then it would be able to

internally choose, from which agent it should receive the next

data package to process. Another solution may introduce an

additional agent to provide fair data supply from both sources.

H. Send value and wait for response construct

Having learned the basic communication modes one can

easily model complex behaviour of concurrent systems. This

and the following subsections will focus on presenting two

examples of common, yet not complicated constructs used in

concurrency modelling. They aim to explain how the presented

communication modes can be utilised in order to achieve

certain effects.

agent A { agent B {
v :: Int = 1; v :: Int = 0;
out a v; -- 1 in b v; -- 1
in a v; -- 2 v = v * 2; -- 2

} out b v; -- 3
}

Figure 15. Send value and wait for response construct

Fig. 15 contains a simple model of a send and wait for
response construct. The LTS graph of this model is presented

in Fig. 16. Agent A sends to agent B a synchronous request

to process its parameter v. When agent B receives a value

(state 3) it doubles it (state 5 or 6) and sends back to

agent A. It is worth noticing that the communication channel

between the agents is a two-way connection, which allows the

communication to flow in both directions. Agent A is waiting

for the response until the communication is eventually finalised

in state 8. This final state of the LTS graph shows that the

initial value of agent A parameter was doubled as expected.



(0)
A: (X,1,[],1)
B: (X,1,[],0)

(1)
A: (W,1,[out(a)],1)

B: (X,1,[],0)

out(A.a)

(2)
A: (X,1,[],1)

B: (W,1,[in(b)],0)

in(B.b)

(3)
A: (X,2,[],1)
B: (X,2,[],1)

in(B.b) out(A.a)

(4)
A: (W,2,[in(a)],1)

B: (X,2,[],1)

in(A.a)

(5)
A: (X,2,[],1)
B: (X,3,[],2)

exec(B)

(6)
A: (W,2,[in(a)],1)

B: (X,3,[],2)

exec(B) in(A.a)

(7)
A: (X,2,[],1)

B: (W,3,[out(b)],2)

out(B.b)

(8)
A: (F,0,[],2)
B: (F,0,[],2)

out(B.b) in(A.a)

Figure 16. Send value and wait for response construct – LTS

I. Busy waiting construct

Busy waiting is a common technique especially in multipro-

cessor systems. It suspends a process in a tight loop without

relinquishing CPU until a specified condition is satisfied, e.g

contested resource is released or a device status is changed.

It offers a very good response time to one particular signal,

at the expense of fully occupying the processor and wasting

CPU cycles that other process might use productively.

Let us consider the model structure from Fig. 4 with the

following code layer:

agent A { agent B {
loop{ -- 1 in b; -- 1

out (0) a{ -- 2 }
success{
jump off;}}} -- 3

off:
null; -- 4

}

The LTS graph for this model is shown in Fig. 17. Agent A
contains a tight loop in which it repeatedly checks if anybody

wants to collect a signal from port a (states 0 and 1). When

agent B eventually initialises the communication, agent A
executes the success clause connected to its in statement (state

4) and exits the loop (state 5).

V. CONCLUSION

A survey of communication techniques available in Alvis

has been presented in the paper. They make Alvis suitable

for modelling concurrent or distributed systems with different

methods of communication between components. Moreover,

what distinguishes Alvis among other formal modelling lan-

guages is the straightforward syntax both for visual modelling

and defining behaviour of agents. Alvis equally supports

(0)
A: (X,1,[],())
B: (X,1,[],())

(1)
A: (X,2,[],())
B: (X,1,[],())

loop(A)

(2)
A: (X,1,[],())

B: (W,1,[in(b)],())

in(B.b)out(A.a)

(3)
A: (X,2,[],())

B: (W,1,[in(b)],())

in(B.b) loop(A)

(4)
A: (X,3,[],())
B: (F,0,[],())

out(A.a)

(5)
A: (X,4,[],())
B: (F,0,[],())

jump(A)

(6)
A: (F,0,[],())
B: (F,0,[],())

null(A)

Figure 17. Busy waiting construct – LTS

the modelling of communication between components of a

complex system and describing of data processing. The Alvis

language allows for the construction of models at a high

level of abstraction, as well as at level close to their target

implementation. These features give Alvis a potential to be

popularised and commonly used in the design and develop-

ment process of complex concurrent and distributed systems.
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