
�Abstract—A new method of first-, second-order and 
multiparameter symbolic sensitivity determination based on the 
nullor model of active devices and modified Coates flow graph is 
presented. Rules for a symbolic reduction of nullor circuit 
complexity are described. An algorithm performs symbolic 
sensitivity analysis with respect to various circuit parameters 
appeared not only at one location in the modified Coates flow 
graph. Advantages of the method suggested are that, the matrix 
inversion is not required and the main drawback of some 
methods based on the adjoint graph, i.e. the necessity to analyze 
the corresponding graph twice, is avoided. Illustrative examples 
on symbolic sensitivity analysis are given. 
 

Index Terms—analogue circuits, flow graphs, nullor model, 
symbolic sensitivity analysis. 

I. INTRODUCTION 
ENSITIVITY analysis plays an important role in 
determining the critical design variables in analog circuit 

analysis and synthesis [1], [2]. Sensitivity analysis is used in a 
wide range of areas such as prediction and evaluation of 
change in the characteristics of a network due to the change in 
the parameters, and optimization design of the network [3]. 
According to the classical formulae, the calculation of the 
first- and second-order transfer function sensitivities needs in 
the first place to find the corresponding derivatives. This is the 
main problem sensitivity analysis and its investigation is an 
object of some special methods, described in the literature [4], 
[5]. Coates flow graph (CFG) is useful and often used in the 
network theory and in the linear system theory [6].  On the 
other hand, nullor-based models have been generated taking 
into account the ideal behavior of the active devices [7]. 
However the input-output resistance and capacitance, gain, 
input offset voltage or current and the frequency response are 
all finite. This is the reason to include these effects in the 
nullor-based models [8]. In this manner, any analog network 
can be modeled with nullors and impedances, and the 
equivalence between them is introduced in [8]-[11]. In this 
paper, the equivalent nullor model of the active circuit is a 
starting point for the sensitivity analysis. On the base of nullor 
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models using some network partial transfer functions, the 
CFG is used for the first-order sensitivity analysis of active 
networks [12]. This method was improved and simplified in 
[13], [14] using the modified Coates flow graph (MCFG). The 
symbolic equations generated by symbolic analysis help not 
only understand the first-order functional behavioral of an 
analog circuit, but also provide insight into second-order 
effects in the circuit. In some network-optimization schemes, 
it is desirable to know the dependence of first-order sensitivity 
on the elements of the network [4], [15]. In [16] the nullor 
model is combined with the MCFG aiming at the calculation 
of the multiparameter sensitivity (MS) in a symbolic form. 

In this paper the process of obtaining first-, second-order 
and multiparameter symbolic sensitivity is automated and 
allows obtaining of all symbolic sensitivities simultaneously. 
The remaining work in this paper has been organized as 
follows. A detailed description of symbolic sensitivity 
analysis method, based on nullor model and modified Coates 
flow-graph, is presented in Section 2. In Section 3, the 
proposed method been applied to the nullor model of the 
STAR network for calculation of its first-, second-order and 
multiparameter symbolic sensitivities. Simulation results for 
the symbolic sensitivities of the voltage transfer function for 
the second-order high-pass filter are obtained. In Section 4, 
the conclusions are discussed. 

II. NULLOR-MODIFIED COATES FLOW GRAPH SYMBOLIC 

SENSITIVITY ANALYSIS METHOD 

A. Reduction of the Nullor Circuit Complexity 
This section analyses a case when more than one parameter 

are likely to vary in a given circuit. Suppose that p parameters 
exist having very small fractional perturbations from their 
nominal values. According to [8]-[11] an equivalent nullor 
circuit N is composed by a designer. Let us assume that there 
are m+n+R+1 nodes, and R nullors in N. In accordance with 
[13], [14], the nodes, numbered from 1 to m represent network 
sources, nodes from m+1 to m+n are inner nodes, that all or 
some of them can be considered as output nodes, and the node 
m+n+1 is the common node for  the nullor circuit. The 
sequence of the nodes in the nullor circuit is determined as 
follows: 
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� Incoming(sources) nodes - 1,..., m;   
� Outgoing nodes as follows:  

- h nodes, connected to edges with passive elements; 
- eN nodes, connected with the ground by a norator; 
- 2 fN  nodes, connected with fN norators. According to 

[17] when two or more norators have common nodes in 
the equivalent nullor circuit, then the pairs of the nodes 
connected with the norators must be numbered in 
ascending order in the income data of the algorithm for 
symbolic sensitivity analysis; 

- frN  nodes, connected with a norator that is situated 
between 2 nodes, one of them is connected with a 
nullator; 

- fn�  nodes that are one of the two nodes, connected with 
the nullators. According to [18] when a nullator or more 
nullators are connected with the source node, because the 
source node is already numbered, this node is missed at 
that point; 

� ef nnR ��  nodes that are removed as follows: 
- fn  nodes, corresponding to the second node, connected 
with the nullators;    
- en  nodes, connected with the nullators grounded. 

Once the nullor circuit is established, a modification of the 
initial modified Coates flow-graph, representing the 
equivalent nullor circuit, is implemented. This modification 
reflects the nullor influence, reduces the nullor circuit 
complexity, and the admittance matrix respectively. Due to 
this modification, R vertices from the initial modified Coates 
flow-graph are removed. These vertices (nodes in the nullor 
 

circuit) correspond to the number of nullators in the nullor 
circuit, and they are strictly determined, i.e. they are the last 
ones in the sequence of the numbering. In this manner, it is 
very clear between which two nodes the transfer function is 
determined after the admittance matrix reduction. The validity 
of the rules is verified by comparison of the reduced 
admittance matrix with the one obtained using the nullor 
properties described in [7]. In this section, a reduction of the 
nullor circuit complexity is implemented and some 
transformations of the initial modified Coates flow-graph are 
performed due to the rules described below: 

Rule 1: When a node k in the nullor circuit, shown in 
Fig.1(a), is connected with the common node by a norator, all 
incoming edges, including the self-loop kkY , in vertex k in the 
corresponding flow-graph in Fig.1(b), are removed. 

Rule 2: When a node k in the nullor circuit, shown in 
Fig.2(a), is connected with the common node by a nullator, all 
outgoing edges, including the self-loop kkY , in vertex k in the 
corresponding flow-graph in Fig. 2(b), are removed. 

Rule 3: When a nullator is connected between a pair nodes 
k and l in the nullor circuit, shown in Fig. 3(a), all originals of 
the outgoing edges from vertex k, including the self-loop kkY , 
in the corresponding flow-graph in Fig. 3(b), are moved to 
vertex l. The equivalent flow-graph is shown in Fig. 3(c). 

Rule 4: When a norator is connected between a pair nodes k 
and l in the nullor circuit, shown in Fig. 4(a), the ends of all 
incoming edges into vertex k, including the self-loop kkY , in 
the corresponding flow-graph in Fig. 4(b), are moved to 
vertex l. The equivalent flow-graph is shown in Fig. 4(c). 

 
 

Fig. 1. Rule 1 of modification of the initial flow-graph. 

 

 
Fig. 3. Rule 3 of modification of the initial flow-graph. 

 

 
 

Fig. 2. Rule 2 of modification of the initial flow-graph. 

 

 
Fig. 4. Rule 4 of modification of the initial flow-graph. 
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The method looks for the definiteness of all outgoing 
vertices (nodes), i. e. each outgoing vertex has to have at least 
one incoming and one outgoing edge. Then the vertex is 
called determined one. This requirement is not performed for 
� �1	n  th vertex in Fig. 5(a). The method controls all il  
vertices, corresponding to nodes ef nnR ��  in the nullor 
circuit, respectively to R vertices in the modified Coates flow-
graph. After performing of the rules, some of the vertices are 
incident with only incoming or outgoing edges. Figure 5(a) 
shows these vertices: � �1�n  th and � �2�n  nd one. Consequently 

il
th vertex has to be united to the undetermined outgoing  

� �1	n  th  vertex or the next determined outgoing n th vertex, 
shown in Fig. 5(b).  

 

 
 

 
 

Fig. 5. Control for the definiteness of all outgoing vertices. 
 

A. Determination of the partial transfer functions and the 
first-, second-order and multiparameter symbolic sensitivity 
Voltage transfer function � �sTba  is under consideration. 

Then normalized first-, and second-order sensitivity, baT
YS

1
 and 

baT
YYS

21
, of rational transfer function � �sTba  with respect to 

circuit parameters � �sY1  and � �sY2  are respectively:  
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� � � � � �sYsasY jiji 1��  and � � � � � �sYsasY klkl 2��  are edges of 

the MCFG and elements of reduced admittance matrix Y(s); 
� �sa ji  and � �sakl  contain other network parameters, for 

nm,...,l,i,a �� 1 ; nm,...,mk,j,b ��� 1  . 
The MCFG allows us to simplify the sensitivity analysis on 

the base of certain network partial transfer functions. 
According to [19], derivatives � � � �sYsT jiba 

  in (1), 

� � � �sYsT klia 

  and � � � �sYsT klbj 

  in (2) are as follow: 
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When parameters � �sY1 and � �sY2  simultaneously participate 

in more then one edge in the modified Coates flow graph, 
respectively in the reduced admittance matrix Y(s), the first- 
and second-order symbolic sensitivities are respectively: 
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Determinants ba� , ia�  , la� , and  bj� , bk� , ik� , lj� , 

and �  can be obtained by the modified Coates flow-graph 
and its sub-graphs MC

k1G , MC
kjG and MC

0G , respectively, as 

follows: 
� MC

0G  is obtained by MCG  due to the removal of all 
outgoing edges from the vertex-source; 
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� MC
k1G , for n...,,k 2� , is obtained from MCG  due to the 

removal of all outgoing edges, including the self-loop in 
the vertex k with a signal � �sVk  and moving the vertex-
source into the vertex k. As a result follows 0�jkY , 

0�kkY  and the originals of the outgoing edges from the 
vertex-source are moved toward the vertex k; 

� MC
kjG  is obtained from MC

0G  by removing all outgoing 
edges, including the self-loop, from the vertex k, as well 
as by removing all incoming edges, including the self-
loop, from the vertex j and must be added an edge 

1	�jkY . 

Consequently 
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where 
 QN - is the number of the loops in the Q-th separation of 

loops in the sub-graph; 
R - the number of separations from loops in the sub-graph; 

QP - the product of loop transmission coefficients in Q-th 

separation of loops in the sub-graph. Every separation of 
loops must be incident to all graph vertices and every one 
vertex must be incident with only one incoming edge and one 
outgoing edge. 

The method suggested in this paper performs 
multiparameter sensitivity analysis with respect to various 
circuit parameters too [16]. Magnitude of multiparameter 
symbolic sensitivity TMS  of transfer function � �sTba  is  

� ��
�

�
p

i

T
sY

T
i

SMS
1

. (10) 

The sequence of the main steps of the suggested method of 
first-, second-order and multiparameter symbolic sensitivity 
analysis is as follows: 
1. Compose the equivalent nullor circuit of the active 

network. 
2. Get the information about the network function required 

and the elements with respect to which the sensitivities are 
to be calculated. Determine the location of the nullators 
and norators. 

3. Formulate the symbolic admittance matrix. 
4. Perform symbolic reduction of nullor circuit complexity 

(initial modified Coates flow graph) using the rules for 
transformation in order to reflect the nullor effect. 

5. Calculate the partial transfer functions and the relevant 
determinants of the sub-graphs. 

6. Calculate the first-order symbolic sensitivity of the transfer 
function by applying (7). 

7. Calculate the second-order symbolic sensitivity of the 
transfer function by applying (8). 

8. Calculate the multiparameter symbolic sensitivity of the 
transfer function by applying (10). 

 

The method suggested automatically performs the rules of 
modification, generates the symbolic admittance reduced 
matrix, determinants, partial transfer functions, first -, second-
order and multiparameter symbolic sensitivity with respect to 
parameters in the circuit. The interested readers can receive 
the software from Irka_honey@yahoo.com. 

III. EXAMPLES 
Example 1. A circuit example, taken from [4], is shown in 

Fig. 6 to illustrate the proposed method. The first – and 
second-order symbolic sensitivities of the transfer function 

� � 13 UUsT �  with respect to parameters 4G and 2sC  are 

calculated. Multiparameter symbolic sensitivity 31TMS  is 
obtained too.  The equivalent nullor circuit N is composed and 
shown in Fig. 7. 

 

 
 

Fig. 6. The STAR network. 
 

 
 

Fig. 7. Equivalent nullor circuit. 
 

An initial form of the MCFG for the passive part of the 
network is shown in Fig. 8(a). The node corresponding to the 
vertex in the initial flow-graph that is removed has number 5.  
 After applying the rules of modification, the modified 
Coates flow-graph follows, represented in Fig. 8(b).  

 

 
a                                                         b 

 

Fig. 8. Initial and modified Coates flow graphs. 
 

We suppose that voltage transfer function 31T  is under 
consideration. When � � 41 GsY � and � � 22 sCsY �  from the 
MCFG (Fig.8b) follows: 421 GY � , 222422 asCGY ��� , 

223 sCY 	� ,  for 1222 sCGa �� . 
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Taking into account (5) first-order symbolic sensitivities 
31

4

T
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For determination of the first-order sensitivities four sub-
graphs and their solutions are required: 21� , 31� , 32�  are 

obtained using sub-graphs MCG21 , MCG31  and MCG32 , 
respectively, shown in Fig. 9. Determinant �  together with 
the possible combinations of loops (1F’s) and their products 
are obtained using sub-graph MCG0 , shown in Fig. 10. 

 

 
D21=Y44*(G4*G6-G1*sC2)-G2*G4*Y55-G2*G1*sC1, 

 

where Y44=G2+G7+sC1; Y55=G1+G3+G6 
 

 
D22=-Y44*G6+Y55*G2 

 

 
D31= -Y22*G1*Y44+sC1*sC1*G1+sC1*Y55*G4 

 

 
D32=-sC1*Y55 

 
Fig. 9. Sub-graphs MCG21 , MCG22 , MCG31 , MCG32  and their 1F’s. 

 
D=Y22*G6*Y44-Y22*G2*Y55-sC1*sC1*G6-sC1*sC2*Y55 

 

Fig. 10. Sub-graph MC
0G  and its 1F’s. 

 
Taking into account (6) and (8) second-order symbolic 

sensitivity 31
24

T
sC,GS  is respectively:  
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For determination of the second-order sensitivity is required 

only one sub-graph  MCG22  more shown in Fig. 9. 
According to (10) the method suggested calculates the 

magnitude of multiparameter sensitivity 31TMS  of transfer 
function 31T  with respect to all parameters: 
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For determination of multiparameter sensitivity are required 
only seven sub-graphs ( MCG21 , MCG31 , MCG41 , MCG32 , MCG33 , MCG34  

and MC
0G ).  

������������	 
�����	 �� 
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ���



Example 2. Let us find the symbolic first- and second-order 
sensitivities of voltage transfer function � � 13 UUsT �  for the 
second-order high-pass filter shown in Fig. 11. Simulation 
results for ����� 1004321 RRRR , 0000501 .C � F and 

000102 .C � F  of the above sensitivities versus frequency f 
are obtained.  

 
 

Fig. 11. Second-order high-pass filter. 
 
Considering the sequence of numbering, vertices (nodes) 4 

and 5 are removed. These nodes are strictly determined in the 
input data. After performing of the rules, the modified Coates 
flow graph is obtained and presented in Fig. 12.  

 

 
 

Fig. 12. Modified Coates flow graph MCG . 

 
Using Mathcad software voltage transfer function � �sT31  

versus frequency f is shown in Fig.13 
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Fig. 13. Frequency-response plot for the circuit in Fig. 11. 
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Taking into account (5) and (6) first-, and second-order 

symbolic sensitivities  31
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For determination of the first- and second-order symbolic 

sensitivities 31
2

T
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T
GS and 31
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T
GGS , four, two and five sub-

graphs and their solutions are required respectively. 
Using Mathcad software symbolic sensitivity simulation 

results versus frequency f are shown in Fig. 14. 
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As it is seen, the sensitivity analysis method based on the 

nullor model and modified Coates flow-graph can be 
implemented in circuit design process and for circuit 
characterization, successfully. 

IV. CONCLUSION 
A new method of first-, second-order and multiparameter 

symbolic sensitivity determination is considered. It is based on 
the equivalent nullor model of active devices and modified 
Coates flow graph. An algorithm for the first-, second-order 
sensitivity analysis with respect to the circuit parameters that 
participate in more then one edge in the modified Coates flow 
graph, respectively in the reduced admittance matrix, is 
proposed. The method suggested automatically can generate 
symbolic admittance reduced matrix, determinants, partial 
transfer functions, symbolic first-, second-order and 
multiparameter sensitivities. Simulation results of the first- 
and second-order sensitivities versus frequency for the 
second-order high-pass filter are obtained. The advantages of 
the method are that, the matrix inversion is not required and 
the main drawback of some methods based on the adjoint 
graph, i.e. the necessity to analyze the corresponding graph 
twice, is avoided. 
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