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Abstract—This paper presents a methodology for digitally 
calibrating analog circuits and systems. Based on the detection of 
an imperfection by a simple comparator, a successive 
approximations algorithm tunes a compensation current. The 
latter is generated by a sub-binary radix M/2+M DAC, which has 
the advantage of allowing reaching arbitrarily high resolutions at 
the cost of extremely small area. The methodology proposed 
allows the removal of any type of imperfections, at the expense of 
two shift registers, a few logical gates and a DAC which is smaller 
than the shift register. 

Index Terms—Calibration, sub-binary DACs, M/2+M, offset 
compensation, deep sub-micron, variability. 

I.  INTRODUCTION 
The evolution of integrated circuit manufacturing 

technologies renders even basic analog systems difficult to 
design today. With the size reduction, the intrinsic precision of 
the components degrades. In parallel, the supply voltage 
decreases, limiting the topologies which can be used. Many 
modern technologies are specifically suited for pure digital 
circuits, and some analog devices, like capacitors, are not 
available. In these conditions, analog design is a challenge even 
for experienced designers. To relieve the extreme design 
constraints in analog circuits, digital calibration becomes a 
must. It allows a low-precision component to be used in high-
performance systems. If the calibration is repeated, it can even 
cancel the effect of temperature drift and ageing. 

The digital calibration is compatible with the evolution of 
fabrication technologies, which ever more facilitates the 
integration of digital solutions at the cost of a dramatic 
reduction of analog performances. Thanks to the reduction of 
the size of digital devices, even complex digital calibration 
solutions can be integrated and become a viable alternative to 
intrinsically precise analog designs. Digital calibration allows 
realizing high-performance analog systems with modern 
technologies. This enables pure analog designs to be 
implemented even in fully digital processes. In existing mixed-
signal designs, the full system realization also becomes 
possible with technologies providing higher integration 
density. Finally, because circuit performances rely on digital 
calibration, retargeting is simplified. The digital blocks can be 
synthesized automatically, whereas only a limited design effort 
is invested in the analog circuit. 

The methodology presented in this paper is versatile. It can 
be applied at circuit or system level, for analog circuits, but 

also mixed-mode circuits like sensor interfaces [1][2][3],  and 
even purely digital systems like memories [4][5][6]. 

II. DIGITAL COMPENSATION OF ANALOG CIRCUITS 
Figure 1 presents a synoptic view of a digitally calibrated 
analog system. The digital calibration shown in grey aims 
cancelling an imperfection of the analog system. As explained 
above, this is a viable alternative to building an intrinsically 
precise analog system which reaches high specifications on its 
own, without requiring calibration.  
 

 
Figure 1.  Digital calibration of an analog system. 

To allow the digital compensation of an imperfection in an 
analog circuit by the injection of a compensation current, two 
nodes must be identified in the analog system: a detection node 
and a compensation node. Furthermore, a detection 
configuration of the compensated analog circuit must be found. 
The observation of the detection node allows determining 
whether the imperfection to be corrected is lower or higher 
than the error-free nominal value to be reached by calibration. 
For example, the offset of an operational amplifier is positive 
or negative around the nominal value 0. Based on the 
information gathered in the detection node, an adequate 
decision is taken to compensate the imperfection by increasing 
it if it is lower than expected or decreasing it if it is higher than 
the nominal value. 

A. Detection Configuration 
The detection configuration is the condition in which the 

circuit imperfection can be observed in the detection node. In 
some cases, this is possible during normal circuit operation, 
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without modifying the circuit topology and interrupting signal 
processing. But in many cases, a different circuit configuration 
is necessary to measure the imperfection in the detection node. 
Usually, this is due to the low level of signal at the detection 
node during normal operation. Figures 2 and 3 present the 
typical example of the offset cancellation of an operational 
amplifier. 

During normal operation in closed-loop (Figure 2), the 
offset of the amplifier can be sensed directly between its two 
inputs. The detection signal � is: 

 
in in OV V V� � �� � � �  ���	

The detection signal level is problematic though. Indeed, at 
the end of the calibration procedure, the residual offset of the 
amplifier is: 

 
;O compensated OCV V�  �
�	

This imposes that the comparator used to determine the 
offset sign has an offset lower or equal to the expected residual 
offset of the amplifier after calibration. 

 
Figure 2.  Closed-loop offset cancellation. 

To overcome this severe limitation, two options can be 
considered. The first one is to compensate the offset of the 
comparator (in an open-loop configuration) before using it to 
correct the offset of the amplifier in closed-loop. The second 
possibility is to measure the offset of the amplifier using the 
open-loop configuration of Figure 3.  

In this topology, the detection signal is: 

 
OAV� �  ���	

where A is the open-loop gain of the operational amplifier. 
This second configuration presents the advantage of having a 
detection signal being several orders of magnitude higher than 

the closed-loop one. As a consequence, the residual offset after 
calibration becomes: 
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The comparator offset is no more critical and thus doesn’t 
need to be calibrated preliminarily. 

 
Figure 3.  Open-loop offset cancellation. 

The disadvantage of the open-loop configuration is the fact 
that it requires to remove the amplifier from its normal 
operation mode. In some applications, this is acceptable. If 
continuous signal processing is required, a strategy with two 
amplifiers being alternatively one calibrated and the other 
operating normally (ping-pong) can be implemented [7]. 

B. Detection Node 
In the selected detection configuration, there should be a 

detection node identified where the imperfection to be 
compensated can be sensed appropriately. In particular, the 
signal level should be sufficiently high, and the signal 
measured should be a function of the imperfection alone. The 
imperfection can be sensed in current or voltage mode, single 
ended or differentially. If single-ended mode voltage detection 
is chosen and if the offset of the comparator is not critical, an 
implementation as simple as a digital inverter can be 
considered. Figure 4 shows how the circuit of Figure 3 can be 
simplified. 

 
Figure 4.  Digital calibration of an analog system. 

C. Compensation Node 
The correction is done by injecting a compensation current 

in an appropriate node of the analog circuit. The compensation 
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node is chosen for its property to convert the injected current 
into a reduction/increase of the imperfection. In the ideal case, 
no other parameter should be affected by the compensation 
current. In practice, the correction node is chosen for the high 
correlation between the injected current and the imperfection, 
and the low correlation between the compensation current and 
any other parameter. Figure 5 shows the implementation of a 
differential current compensation of a Miller operational 
amplifier. 

 
Figure 5.  Differential compensation of a Miller operational amplifier. 

In this circuit, the compensation current mirrors use PMOS 
transistors and the current is injected in the same direction 
differentially. This allows the direct connection of an M/2+M 
ladder to the compensation current inputs, transistors M9 and 
M11 being the current collectors. Alternative compensation 
circuits could inject the compensation current unilaterally. 

For the choice of the compensation node, attention must be 
paid to not degrading circuit performance. This implies that the 
current mirrors added (transistors M10 and M12 in Figure 5) 
don’t add significant parasitic capacitances to the compensation 
nodes, and that their output impedance is higher than the 
impedance in the compensation nodes. 

The dimensioning of the compensation current mirrors in 
the case of the Miller operational amplifier is done as follows:  

1. The maximum compensation current is determined.  

2. The transistor length L is determined in order to have a 
sufficiently low channel conductance gds that does not 
affect much the impedance of the compensation node. The 
length must also be sufficient to limit the effect of voltage 
variations in the compensation node on the compensation 
current that is injected.  

3. The transistor width W is calculated, considering that the 
output transistors of the current mirrors must remain in 
saturation. The width must be large enough to keep the 
saturation voltage below the voltage in the compensation 
node. 

III. SUCCESSIVE APPROXIMATIONS 
The successive approximations algorithm performs a search 

through the possible values of the compensation currents. It 
performs dichotomy at each step, by determining whether the 
tested bit generates a compensation value too high or not. The 
algorithm starts by testing the most significant bit (MSB), and 

goes down towards the least significant bit (LSB). Figure 6 
presents a pseudo-code description of the algorithm, with di (i 

 [1, n]) being the digital input word of the n-bits DAC, and 
Cout the output of the comparator. 

 
Figure 6.  Successive approximations algorithm. 

First, all bits are cleared (D = 0). Then, the bits are tested 
successively in a loop, starting with the MSB and going down 
to the LSB. For each bit, the output value of the comparator 
Cout is examined when the bit is set. If the value is negative, 
this signifies that the remaining imperfection is negative and 
that the DAC value has still to be increased. For this reason, the 
bit is kept. If on the contrary Cout is positive, the currently 
tested code is too high and the tested bit is reset. The algorithm 
then performs the same test with the next less significant bit, 
until reaching the LSB.  

A. Working Condition 
For the successive approximations algorithm to work 

properly, the following condition has to be met: 
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The working condition guarantees that the sum of the less 
significant bits of any bit bi in the DAC is not inferior by more 
than one LSB to the bit itself (bi). This ensures that if a bit bi is 
rejected during a given step of the successive approximations 
algorithm, the remaining steps using only less significant bits 
cover the complete range of values up to the value just rejected. 

IV. SUB-BINARY RADIX DACS 
Using a binary-radix DAC with a successive 

approximations algorithm exploits the limit of the working 
condition. Indeed, for a binary-radix DAC, one can write: 
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Binary-radix DACs are difficult to design unless the 
number of bits is small, because the weight of each bit needs to 
be precisely set to avoid missing codes and redundancies. For 
this reason, they usually occupy an important circuit area. 

The working condition of the successive approximations 
algorithm does not impose precise bit weights. Whereas 
missing codes are not allowed, redundancies are not 

reset all di = 0
for i = n downto 1

set di = 1
if Cout > 0

reset di = 0
end if

end for
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problematic. This can be turned into an advantage, because it 
allows the use of imprecise converters. By voluntarily 
introducing redundancies, the risk of missing codes is reduced 
and the sub-binary converters can be designed using less effort 
and area without degrading the performance of the algorithm. 

Figure 7 presents the input/output characteristics of a 4-bits 
radix-1.5 DAC. One can see that it has a resolution of 3 bits 
(the LSB is 1 on a full scale of 8), and that it presents several 
redundancies, in particular for the codes where the MSBs 
change values. 

 
Figure 7.  Input/output characteristics of a 4-birs radix-1.5 DAC. 

It is noteworthy that the working condition of the 
successive approximations algorithm is achieved equally in 
each stage. This means that adding an extra bit does not imply 
an increase in circuit area for matching purpose. Each stage of 
the converter has a given area fixed by component mismatches, 
and adding an extra bit simply costs the area corresponding to 
one more stage. 

Sub-binary converters should thus systematically be used 
with successive approximations algorithms. There is no reason 
for preferring a conventional radix-2 converter. 

A. Radix choice 
To limit the number of stages in the DAC, the radix should 

be chosen as high as possible (close to 2). However, the need to 
guarantee that the DAC will have no missing code, the 
maximum radix depends on component mismatch. Figure 8 
presents the maximum radix R allowed for not violating the 
working condition of the successive approximations algorithm 
as a function of the worst-case component mismatch �. 

 
Figure 8.  Maximum radix allowed for a given component mismatch. 

It can be seen that for perfect components (� = 0), a radix-2 
converter can be implemented. When the mismatch is 100%, 
the only choice is a thermometric scale, where each bit has the 
same weight. Typical values of mismatches lie around 10%, 
which corresponds to a radix value of 1.8. 

B. Resolution 
The full scale current of the DAC is chosen to cover the  

whole range of imperfection to be cancelled 
(Impuncompensated;max).  

Then, the necessary resolution of the sub-binary DAC can 
be expressed as the ratio between the maximum magnitude of 
the imperfection to be compensated and the worst-case residual 
imperfection expected after calibration (Impcompensated;max): 
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For a n-bits sub-binary radix-R DAC, the full scale is equal 
to: 

 1
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This corresponds to a radix-2 equivalent resolution of: 
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In practice, for radices close to 2, only a few additional bits 
are needed to reach the equivalent resolution of a radix-2 
converter. A simple approximation gives: 
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where Nbits is the number of bits of the radix-2 
implementation. This additional cost is negligible in terms of 
circuit area, because every stage in a sub-binary DAC occupies 
the same area and that the area per stage doesn’t increase with 
resolution.  This is not the case for binary radix DACs. 

V. SUB-BINARY R/2+R DACS 
Sub-binary radix DACs can be implemented 

advantageously in R/2R-like structures. Figure 9 shows such a 
ladder where the resistors in the vertical branches have a value 
xR, except the terminator which has a xTR value.  

When x = xT = 2, the ladder is the well-known R/2R. 

 

 
Figure 9.  R/xR ladder. 

For a R/2R ladder, the equivalent resistor Req;i in each stage 
is equal to 2R. This implies that the current division in each 
branch is done equally, i.e. bi = ii. But since ii is the sum of the 
least significant bits plus one LSB, equation (6) holds for this 
ladder. The consequence of this is that even the slightest 
mismatch on the resistor values translates into a missing code. 

To avoid this situation, the ladder is made sub-binary by 
choosing a value of x > 2.  The equivalent resistor Req;i then 
becomes lower than xR, and the current division makes the 
sum of the remaining bits higher than the bit current: 
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This is the favorable situation with respect to the working 
condition of the successive approximations algorithm (equation 
5).  The ladder now tolerates a resistor mismatch and the DAC 
will have no missing code if the radix, or equivalently the xR 
value, is chosen according to Figure 8. 

VI. SUB-BINARY M/2+M DACS 
The realization of sub-binary radix DACs with resistors is 

not optimal in terms of circuit area. An implementation based 
on transistors [8] is much more compact. 

In the resistive ladder, each elementary resistor is replaced 
by a MOS transistor of fixed dimensions W over L (equal for 
all transistors). The gate voltages VG are the same for all 
transistors in the ladder. At these conditions, the transistor-
based circuit divides the current linearly as resistors [9][10]. 

Figure 10 shows the transistor translation (M/3M) of a 
R/3R ladder. 

 

 
Figure 10.  M/3M ladder. 

In each stage horizontally, there is one single transistor 
implementing an equivalent R transistor. In each vertical 
branch, there are 3 transistors in series which implement an 
equivalent 3R resistor. In each stage, the two bottom-most 
transistors also have the role of switching the current either to 
the output or to ground. To achieve that, one transistor is biased 
with a gate voltage equal to VG, which makes it behave like the 
third 1R resistor needed in each vertical branch, whereas the 
other transistor in parallel is disabled by applying a gate 
voltage equal to Vdd. In the network of Figure 10, an 
advantageous choice is to set VG = Vss, because this allows 
driving the di digital control signals directly with logic. 

The penultimate (2) stage in the network is designed to 
generate locally a sub-binary current division for the LSB. Its 
implementation is kept as simple as possible so that the regular 
structure of the network is not broken. 

Other radices can also be implemented with M/2+M 
structures. Figure 11 shows an implementation of a M/2.5M 
ladder. 

 
Figure 11.  M/2.5M ladder. 

In this circuit, the middle transistor in each vertical branch 
is put in parallel with a second one. The equivalent vertical 
resistance thus indeed becomes 2.5R.  
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The M/2.5M ladder exhibits a radix slightly higher than a 
M/3M ladder. This has the advantage of needing fewer 
additional bits, but imposes to have better matched transistors. 
Table I summarizes the characteristics of both networks. 

TABLE I.  M/2+M LADDER CHARACTERISTICS 

Value 
Parameter 

M/2.5M M/3M 

Radix 1.86 1.77 

Maximum allowed mismatch 7.3% 13% 

 

A. Current collectors 
The output current from the M/2+M ladder can be collected 

by current mirrors. Figure 12 shows a differential output circuit 
collecting both currents from the current division network. The 
two outputs can be used to drive the compensation nodes, as 
shown in Figure 5. 

 
Figure 12.  M/3M ladder with current collectors. 

VII. CIRCUIT LAYOUT 
The M/2+M ladders are regular structures, whose layout can 

be done as arrays. Since the allowed transistor mismatch is 
around 10% and because an increased number of stages doesn’t 
require better matching, the transistor dimensions (W and L) 
can be kept small. Figure 13 shows a micrograph of a 17 stages 
M/3M ladder, with two current mirrors as an output stage as in 
Figure 12, and a digital register used for storing the ADC input 
code. It can be observed that the DAC is smaller than the 
digital register, and that the output stage is also a compact 
structure. 

 
Figure 13.  17-stages M/3M ladder, with current collectors and input buffer. 

VIII. CONCLUSION 
The methodology presented in this paper allows the 

systematic and versatile compensation of imperfections in 
analog circuits using simple digital circuits and an area-
efficient sub-binary DAC implementation. At the cost of a 
circuit area equivalent to only a few digital registers (including 
the DAC and its output stage), an imperfection can be 
corrected with an arbitrarily high resolution. This enables high-
performance analog design even in deep sub-micron 
technologies, where process variability is problematic and the 
degrees of freedom for analog design are severely restricted.  
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