
A Relational Database Performance Considerations
for Numerical Simulation Backend Storage

Jacek Nazdrowicz

 Abstract—Problems of effective numerical calculations in
scientific applications are caused by non-optimal front-end
application code or ineffective system of scientific data
management at back-end. In this article author presents some
aspects of performance problems when relational database is
used as backend storage based on real cases. Presented examples
come from simulated environments with large load and many
queries executed. These examples can reflect real problems with
data processing in numerical calculations on data extracted from
MSSQL Server database.

Index Terms—flat file, relational database, numerical
methods, data mangement, performance.

I. INTRODUCTION

N computing systems, including numerical applications,
now it attaches great importance to the efficient storage

system and access to data. As the computing power of today's
hardware grows, mathematical and physical models are
becoming more complex which naturally increases the scale
calculations and dramatically increase the amount of data.
While the data space is not a problem, access to them in a very
short acceptable time is often a big challenge. This problem is
directly translated into the total time and the end result
calculation or simulation. This paper focuses on efficient
access to data and its storage. Currently applications (systems)
are layered (multi-tiering). In the simplest configuration, there
is a numerical application layer, which is focused all its logic
(here are the main calculations performed) and the data layer
(used by the application logic). One can say that it is the logic
of the data - the data layer is rather passive.

Numerical application for scientific objectives calculations
require huge and effective system for data storage. Nowadays
there are many technologies and techniques for storing data.
Hardware appliances with appropriate resource share
protocols implemented and specialized software giving us
possibility to create appropriate and fast response data storage
system. Most of contemporary numerical applications use flat
files for storing data which contain records with unstructured
relationships. These files can be saved in disk drives located
locally in application server or remotely in arrays.

To get data quickly one has to allocate memory and
processors, which effectively manage databases and satisfy
scalability. Contemporary numerical applications flat file-
based often met the problem of constrained scalability what
impacts directly on functionality and possibility to solve

 J. Nazdrowicz is with the Department of Microelectronics and Computer

Science, Lodz University of Technology, ul. Wolczanska 22/223,
90-924 Lodz, Poland (email: jnazdrowicz@dmcs.pl)

complex physical problems. Relational database is very good
solution because it manages data very effectively [1].

In some publications one can find such practical
applications. In the paper [2] there are SQL-compliant
databases presented and benefits of using them in FEM (Finite
Elements Method) applications. In Microsoft report [3]
implementation SQL Server with FEM front-end applications
are presented. One can find some useable database engine
features, which may be used in calculation optimization and
additionally examples of tables database structure, indexes,
integration services. The Database utilization also appeared as
a part of solution for online data access (through Internet)
system for a Finite Element Analysis (FEA) [4]. The objective
of such system was to design mechanism to access the results
from readily accessible data sources for further manipulation
across network in other location, applications and many
scientists. This article continues consideration of application
database engine as a backend storage for numerical calculation
presented in [9].

The use of appropriate techniques and IT equipment for
the purposes of the calculation requires the determination of
how data is to be stored, which is to be accessed and what is
the most important - what will be the performance of such a
system. Among the contemporary methods of data access and
storage clearly distinguish two: first - data flat file that
application directly access reading from and writing data to it
and second - relational database as a more complex structure.

Thus, in the construction of such a system should include:
- whether it will be a lot of data reads,
- whether it will be a lot of records,
- what will be the size of the data,
- whether the data will be mixed (e.g . text , numerical),
- whether the data will be LOB (Large Objects e.g. XML),
- economics solutions.

The number of readings data records determines the
manner of data storage implementation. It is known that hard
drives are much slower than RAM, so it is important skilful
use of available opportunities.

II. TWO TYPES OF BACKEND STORAGE

 A flat file stores data in plain text format and serve as a
bare means of storing table information. Flat file does not hold
any relations between data. Difference between flat file and
relational database is meaningful – flat file is processed
entirely, while relational database gives capability to access
single record.

I

Many applications are created using flat files at the
backend because of their simple structure; additional big
advantage is that their consume much less space than
relational database structured files; disadvantage is that the
information can only be read or write. Data representation in a
flat files used as a backend in applications meets certain
standards. In simplest form every column of file is specific
data type. Particular data separation can be achieved using
various delimiters, included in flat files to ensure fixed-width
data formatting. They can reduce the overhead of locating
different fields in a row of file.

 Relational database application will largely depend on the
nature and purpose of the data, access requirements, and other
applications rules which need to access database. Flat-file
databases are more simple but limit data access allowing for
manual process and structured programs operation. Relational
databases are more complex but provide advanced capabilities
and more efficient access to required data located in file. A
huge advantage is possibility to use hierarchical order of data
(B-trees, heaps), indexing and optimizing access to data with
queries from RDBMS.

 Relational database (RDB) is a collection of related tables.
Each table is a physical representation of object that consists
of columns and rows. Columns are the fields of a record or
the attributes of an object. The rows contain the values or data,
called records. Relationships can exist among the columns
within a table and among many tables.

Nowadays relational model of data is much more popular
than before; although numerical applications were linked to
databases long time ago [5], now this solution has greater
importance. One of the driving factor behind that is growing
volume of data to process, other one – considerably growth
and development relational databases and tools for managing.

Fig. 1. Processing data with (a) flat file, (b) relational database backend
storage.

In Fig. 1. there are presented differences between flat file
and relational database backend storage for scientific
applications.

The use of relational databases (including SQL Server)
carries with it many benefits, because user - application
designer for numerical calculation has a much greater impact
on data storage and access to data. This, however, carries with
it certain consequences. In the article [9] author presented the

possibility of using the database engine SQL server for storage
and provision of data for the application. The complexity of
such a solution makes it necessary in designing to pay
attention to many aspects of the nature of programming that
can significantly affect the efficiency of use and performance.
Although in the majority of cases the SQL Server can be used
in such applications in the basic range, without launching a
number of additional features, however incompetent and non-
optimal referring to store in the database may expose the
author's solution to many unpleasant surprises and a
significant time extension of the calculation.

Fig. 2. Data storage system for application: (a) direct access to disk, (b) with
RDBMS, (c) with Microcode of disk array.

Fig. 2 presents the idea of the use of available components
to build a storage system for the more general application. In
all cases, we have as a frontend application (regardless of the
development environment in which it originated) and a data
storage system (backend). Data storage system can be
implemented in two main ways: as a direct read/write to disk
(access block – fig. 2a) or indirect management software
access to data (e.g., relational database – fig. 2b, c - Oracle or
MS SQL Server). Fig. 2c can be seen as the most advanced
version of solution: between RDBMS and disk/hard drive
there is an additional element in the form of a module
containing microcode managing multiple access to the drive
and organizing drives in the so-called RAID (Redundant
Array of Inexpensive Disks) groups. In any case, (a, b, c), the
data is written to the file, however, much different way of their
organization. In the case of 2a the data are written to the flat
files, the other - to file relational databases.

While comparing the two methods of accessing data at a
glance, it appears that direct file access is faster, because there
is no additional software between the application and the disk
subsystem, however this is not always true. It mainly depends
on:

- programming skills,
- good knowledge of the architecture for storing data,
- excellent knowledge of implemented algorithm and

analytical skills for potential adverse events that may
occur during program execution.

a) Front-End
Application

FLAT
FILES

All Numerical
calculations

Read
data

Write data

Raw data only
b)

Front-End
Application

RELATIONAL
DATABASE

Numerical
calculations

Read data

Write
data/queries

Raw data
Partial processing data

Front-End
Application DISK

Direct access

c)

Front-End
Application

DISK OR
ARRAY

RDBMS

Front-End
Application

DISK OR
ARRAY

RDBMS Micro
code

b)

a)

RDBMS greatly relieves the developer of having such
knowledge, since many conflicts and adverse situations that
may arise while accessing data it solves itself and there are
transparent for programmer/user. There are however (and this
is not uncommon) situations in which the system solves the
problem, but thanks non-optimal code, the application
executes very slowly (which, of course, it could be avoided).

Communication with the database application is done
using the extended SQL query language called T-SQL (SQL
transaction). This extension allows you to create loops,
conditional statements and variables. Additionally, it allows
you to create triggers, stored procedures and functions at the
level of the database itself. These features give the user
additional opportunities to control the behavior of database
and programming capabilities extend much that can be
successfully used in numerical applications and solve many
performance problems.

III. RELATIONAL DATABASE BASED DATA FACTORS OF

PERFORMANCE. AN OVERVIEW
In designing the system code database layer, therefore, one

should pay special attention to the following areas that may
cause performance problems which affects whole numerical
calculation system:

- the physical disk subsystem,
- incorrect assessment of the requirements cache for

RDBMS,
- optimal data storage,
- indexing strategies, execution plans and statistics in the

database,
- data paging,
- competition for access to resources database

(mechanisms to block access to data),
- competition for resources and the expectation of access

(latch).

It should be remembered that these problems to a large
number of cases can coexist and depend on each other, and
therefore the problems of databases performance are often
multi-dimensional problems and requires taking into
consideration the correlation between them.

A. Physical disk subsystem
The physical disk subsystem is the part that directly affects

the quality of the whole system performance. Any
performance issues at this level directly affect the performance
problems at the level of the RDBMS. The main performance
parameter of disk subsystem is the number of operations per
second (i.e. IOPS - Input Output operations per second). The
need for adequate disk subsystem should already be identified
in the initial phase of building the system. Why is this so
important? Currently you can choose storage as a local drives
or arrays. First option is cheaper, however, increase the
efficiency can be made only by changing the type of disc so
this choice is very limited. If you additionally will need
enough space for the data, the problem may be quite serious.
A better solution is to select a disk array in which disks can be
aggregated and grouped appropriately and fairly easily scale
the size of volumes (Fig. 3).

Fig. 3. Data storage system for application a) local disk, b) disk array.

It is worth mentioning how disk space is available for local
drives, and as in the case of disk array (fig. 3a and b). In case
of local disk logical disks are called Partitions, in case of
arrays – LUN (Logical Unit Number). Difference is
meaningful – flexibility of IOPS and size expanding.

Performance testing is often done empirically and makes
changes in the course of performance analysis (hence the use
of arrays is more efficient). During the analysis, it is necessary
to take into account the parameters of physical disks and
available partitions / LUNs on the side of the operating system
(because RDBMS works under its control). Here it is
important to pay attention to the limits that for a given
parameter and the area is necessary.

The disk subsystem performance analysis should first of all
take into account the following parameters:

- the number of operations per second,
- time to read and write data,
- the queue to disk / volume.

The number of operations per second tells what is the real
value of this parameter in a production environment. This
parameter, of course, does not exceed the limit value derived
for the specific system disks. The observation of this size
allows us to evaluate whether the use of the subsystem by the
application numerical approaches the technological frontier.
Solving the problem is by setting up RAID group on the right
amount of physical disks. Knowing what technological
limitation IOPS has a single disk, one can form composite
volumes and increase this limit (generally the total IOPS is the
sum of the individual disks IOPS).

Time to read and write data - this parameter results
directly from disk configuration and the competition for
access to volumes by many processes (not only SQL server).
In the case of volumes located on a local drive both the
operating system and RDBMS use them, resulting competition
for access time for each file. Even if the operating system files
and SQL Server are located on separate logical volumes but
on the same physical disk, problem still exists and total IOPS
does not extend (in the case of SAS drive about 210 IOPS). A
better solution is to deploy operating system and database files
on separate physical disks (each of the disks has 210 IOPS) –
a profit is therefore twofold. The situation is similar in the
case of arrays, except that a large number of disks allows for a
much improved performance.

Total IOPS is much larger than single disk

Disk

LUN 1

LUN 2

Partition 1

Partition 2

a)

b)

Disks

Another issue is the length of the block recorded on the
disc. It is known that the read / write operations (IOs)
concerns a single block, so it is natural that the extension of
the block of data stored significantly affects the transfer of
data from/to the application in a proportionate manner.

Queue to disk – means how many IOPS waits for disk
service. Large value means latency of data operation. This
parameter influences performance of RDBMS meaningfully
and results from technological limitations.

B. RDBMS cache
Buffer cache for SQL Server directly impacts on

performance because all disk operations pass through it.
Buffer memory cache is located in the memory of the server
therefore at the stage of the project, the system must equip it
with the right size. How much can you allocate memory for an
instance of SQL Server? Good practice says, that a maximum
of 80% of the total available memory. How much is actually
necessary? It depends on the nature of the operations
performed on the database. If there are domination a large
variability read pages of data, the buffer should be relatively
larger to accommodate them in it.

It is worth mentioning about the mechanism would occur
when reading data from the database. Read the data side of the
disc is stored in memory in the buffer manager. This reading is
referred to as physical. Re-reading this data is not from
physical disk but from buffer cache – it is definitely faster.
This is called logical reading (fig. 4). Of course pages in the
buffer cache does not exist forever, the oldest are preempted in
favor of these new, if space runs out. This means that physical
reading from disk again will take place, which takes more
time. A large number of readings can consequently affect page
lifetime if the buffer cache is not large enough.

Fig. 4. Read and write data through buffer cache.

C. Optimal data storage
In modern relational databases data are stored in minimum

one data file (e.g. in MS SQL this is file with .mdf or .ndf
extension). Sometimes it is worth in very loaded calculations
to split data tables between few data files (called partitioning).
Having efficient disk subsystem we can split data files with
partitioning tables among many physical disk or RAID to get
more performance than locate one or many files on one
physical disk only (fig. 5). The best results are in reading data
or writing by many processes.

Fig. 5. Partitioning tables among database files and physical disks.

The Fig. 5. shows maximum optimized table deployment –
in real world we do not have so much possibility. Disk
quantity is less than tables and one should optimally tables
deploy taking into account their load. If all data are on one
file, risk of performance degradation is much more because all
requests are directed to one physical disk, and total IOPS must
be split on many processes. Thus, in that case disk subsystem
must be more efficient.

D. Data paging

We are dealing here with two important parameters: the
number pages moved per second and Page Life Expectancy.
Paging refers to move pages from disk to buffer cache and
vice versa (for saving data in the checkpoint). A large number
pages per second parameter testifies to the fact that very often
the pages are transferred to the buffer cache and be released at
the same time and takes over old pages place. If these two
things are happening very intensively at short intervals – it
slows down the system meaningfully. The second parameter
confirming these problems is Page Life Expectancy, which
shows the life of the page in buffer manager. A high value of
this parameter indicates that the data pages are not often
exchanged in the buffer cache, and the application that wants
to read the data does not have to reach into slower disks (read
physical) but high-speed memory buffer (read logic) only. The
low value of the parameter in turn testifies to the fact that
there is such a large scatter read pages that do not fit all in the
buffer and need to be replaced frequently. It also gives a signal
that the buffer should be expanded.

Fig. 6. Dependancy between Page Life Expectancy and number of
transactions.

As one can see on fig.6. paging strongly depends on
number of transactions and T-SQL compiles*). Generally,
increase time of life page in buffer is inversely proportional to
transaction amount, complies and executed batches. For many
calculations the good practice is to fit buffer cache appropriate
to needs, do calculations in small transactions (to free space in
buffer cache), optimizing the query to shorten its duration
time, split transaction into smaller transactions, avoid query
concurrencies. Another issue one has to take into
consideration is to optimize indexes to avoid whole tables scan
(because large object will be placed in buffer manager and its
size can exceeded). Sometimes additionally queries has to be
recompiled (this often happens in case of parametrized
procedures or functions) what it will take a time. This will
enforce many physical data IOPS and slow down calculations.
The appropriate index strategy must be then implemented and
statistics must be refreshed.

*) All presented results were extracted from real database bulk On-Line
Transaction Processing type environment managed by author

Request
File1.mdf

File2.ndf

FileN.ndf

Disk1

Disk2

DiskN

Table1

Table2

TableN DATABASE

Request

Request

RDBMS Buffer
Cache

Logical
read/write

Physical
read/write

E. Competition for access to resources database (mechanisms
of locking access to data)

The mechanism of placing locks in the database is a very
important function because it does not allow to process a
single cell or row of data derived from two different
processes/threads. Therefore ensures data consistency.
Locking records can be made on several levels: field, line,
record or the entire table. This is what type of lock is fitted
depends primarily on the specifics of the application and its
needs at any given moment. RDBMS often also implies an
intent lock, through which already reserves the right to set the
lock before you actually will need to indicate that you will
want soon to make changes in the facility. In a situation where
the process will try to access read or write to the object on
which another process has already started blocking, it will
have to wait until lock is released. It must be emphasized that
if some processes need to get to a specific record field, and the
lock is attached to the whole record or table (wider range), of
course, that record will also be available.

Fig. 7. Deadlock mechanism.

In the case of numerical applications, where a large
number of reads and writes to the database will take place
must reckon with the mass occurrence of blockages.
Minimization can only take place when the application will try
to avoid conflicts during reading data (though often probably
cannot be done). As a general rule and good practice at writing
code is to avoid blocking broader range of objects than it is
needed. Why? In a situation where process 1 calculates and
wants to get data from two or more fields in the record, and
before another process 2 blocked the entire record or worse
table although solicit from a completely different field,
unfortunately the first trial and so will have to wait. This of
course can significantly slow down the calculations made by
the application.

The least desirable effect setting up blockades is called
deadlock, which for intensive applications with writing and
reading can occur. Such interlocking objects takes access to
the data by two or more processes. When such a situation
occurs? Then, when you want to save the cross processes in
one object and read in another, the second process performs a
similar operation on the same premises - fig. 7 [10].
Unfortunately in such case there is necessary manually solve
the problem by selecting one process to kill. Another problem
is when lock chain appears. There are many processes locked
by previous one, and there is one (so called head blocker) on
which rest processes must wait to finish.

F. Competition for hardware resources and the expectation
of access (latch)

This mechanism operates similarly to the lock mechanism,
with the proviso that relates to server resources. Latch appear
when there is a need for an application to gain access to the
resource, while access is currently impossible. For obvious
reasons, the process of trying to get a resource has to wait,
which, of course, introduces a delay.

The example of fig. 8 shows how strong is the latches
influence on the response time of the server. One can see clear
correlation between the two characteristics over time.
Appearing peak - lock latch type (fig. 8b) - automatically
causes the appearance of a long response time of the server
which in turn has a negative impact on data processing
applications - extending the data processing.

a)

b)

Fig. 8. Dependency between response time a) and latches amount b).

The following fig. 9 shows the degradation of the
performance of the server, which results directly from
imposed on a large number of transactions (counting). There
are shown a dramatic increase in the number of disk
operations (IO), which is maintained for several hours. You
can see here that the number of locks also remain relatively
high during much of this time. The plot, of course, still tell us
much, but in many cases you may notice some correlations
between the different categories (e.g. number of IOs and
perform backup). Full analysis of the problem thus requires a
more comprehensive approach and a broader view of
performance monitoring data.

Object 1

Process 1

Object 2

Process 2

DEADLOCK

write

write

read

read

Fig. 9. SQL Server wait times caused by some RDBMS areas.

Much more information is obtained from the graphs
(fig 10a and b) – these graphs are referred to large volume
data processing with many I/Os operations – typical of FEM
applications. It can be seen primarily that a large number of
reads and writes take place. One can see that the number of
readings per second (oscillates around the number 3500) it
dominates the number of writes per second (it fluctuates
around 100). Of course, such situations can occur normally in
the event of a large number of transaction processing
operations, but their influence on degradation of the system
may be significant if it is directly concerned the disk
subsystem. This case can see in fig. 10a, which represents the
physical IOPS of SQL Server database, which are physical
disk operations. One can see that the characteristic 10a and
10b are very similar which clearly indicates that properly the
number of IOPS operations performed on the disk. It is very
disadvantageous particularly in the case of a large number of
transactions - numerical operations, because it causes
significant delays and slowing down numerical application.
These delays are a consequence of the emergence of latches,
which in a sense is the equivalent of a locks on the same
premises relational databases.

 a) b)

Fig. 10. Read/write times per second a), SQL Server Physical IOPS b).

Another issue is the number of operations per second that
can be read from this graph. It oscillates around the number
50000-60000 IOPS which of course in case of single disk is
not to achieve (a single SAS disk reaches about 210IOps).
Therefore, we attempt to use the database for complex
numerical calculations (in particular FEM) to investigate
empirically the upper limit of IOPS that will be achieved for a
specific analysis of the numerical model. Such information

may prove to be decisive for the shape of the future system for
calculation of course including the use of local drives/arrays
and single disk/disk groups.

Fig. 11. Page Life Expectancy.

Another figure (fig. 11) shows the lifetime pages in
memory SQL Server (buffer cache). It is seen that when data
are read from disk (fig.10) page life shortens dramatically and
many pages are thrown out from buffer cache and new ones are
coming. This is the worst scenario can appeared in case of
numerical application, because bulk physical data operation
can happen, and database response to application will decrease.

G. Indexing strategies
An index is a structure associated with a table that take

part in query execution[6][7]; it contains keys built from one
or more columns in the table. Indexes are stored in a
commonly known B-tree structure for speeding up to find
rows associated with the key values. It is especially useful in
case of searching for data. Indexing data is complex operation,
taking a time for appropriate creation but in effect front-end
calculation applications works more effective. It is especially
important in algorithms with many recurrencies and
complicated equations to solve where data are exchanged with
storage backend many times. Of course there is one important
disadvantage of this solution - indexes take additional storage
space. Indexes are very closely connected to statistics and as
they changed – indexes must be refreshed, too.

Indexes are very useful, making possible to use in data
storage access during numerical FEM calculations. Tests were
performed for 17000 and 34000 elements. Time duration
was measured with SET STATISTICS TIME ON option.
Results are shown on fig. 12 and 13 where one can see and
compare execution time of solution with and without index
applied.

Fig. 12. Execution time of selecting nodes coordinates for various number of
elements without index application.

Fig. 13. Execution time of selecting nodes coordinates for various number of
elements with index application.

Execution plan calculates total cost of query execution.
System of selecting execution plans makes decision which
plan is the most optimized. During that it takes into
consideration available heap (unstructured data), indexes
structure and statistics. On fig. 14 one can see the same query
extracting numerical data in two ways: without and with
index. Red frame points at clue block.

a)

b)

Fig. 14. Example of execution plan query extracting joined 2 tables FEM data
from database (a) non optimized query, (b) optimized query after hint index
applied.

 When index is lack whole table is scanned (all data in table
are processed), when appropriate index is applied only
necessary data are sought and then selected for further
processing. Test carried out FEM data with execution data
extracting showed that non-optimized query last 28 seconds
(fig. 12), whereas after index applied – fraction of the second
(fig. 13). Significant differences between these solutions are
marked with red frame in fig. 14a) and 14b), where a
comparison of volume of data processed is shown. In the case
of table scan, tables placed in query (with join clause too), are
bulk read record by record (and saved in buffer cache).
Because as we mentioned before, all data passes through
buffer cache, it can fill up very fast. Next scans will generate
physical IOs of the same table because of fast changes in
buffer, in effect will increase time of execution and server
waits will appear.

Another problem we can meet during execution of queries
is unnecessary thread parallelism which sometimes do not
accelerate response to numerical application. It happens in
case of strong dependency of threads with others especially in
resources. In such case one thread cannot continue because it
must wait for resources used by other thread. Then user must
empirically appropriate adjust value of Cost of Parallelism.

Indexing strategies are widely explained in many
publications related to RDBMS tuning and optimization [8].
We have to notice that optimization is related either to indexes
or to query form itself.

Fig. 15. Sample distribution statistics.

An important element during such optimization process are
statistics, which are sampled map of data distribution in a table
(fig. 15). They help query optimizer to create the best strategy
for execution all the physical operations of joining, sorting,
ordering and selecting, updating, deleting the data. With time
however, statistics become out-of-date because of data
updates. In such situation statistics no longer reflect data
distribution in table (after many updates) and in consequence
queries execution time can suddenly grow. User should refresh
and rebuild statistics manually then. Sometimes when there
are many changes on database in unit time it good practice is
to rebuild or reorganize indexes and statistics automatically
[13] when data processing is minimized.

Indexes and statistics must be refreshed periodically if they
data are updated. Without it indexes are not effective and often
can impact negatively on query execution time.

IV. CONCLUSIONS

 The main objective of this article was to bring closer
problems with using relational database-based storage for bulk
data processing (calculations) and point on many areas
problems can occur during operation (numerical calculations).
All these problems are performance nature and are
multidimensional i.e. they can depend on others. Application
RDBMS as a backend for numerical calculations meet the
same problems like in other cases (e.g. business OLTP- online
transactional processing) because it operates also with the
same rules concerning queries optimization and SQL server
system components. Many business cases are based on
numerical methods, they also operate on large volume of data
that is why performance problem will be similarly.

Although RDBMS application as a backend storage is
encouraged, person who wants to implement must know
disadvantage of such solution. To get the best performance
database must be continuously monitored and all structures
must be refreshed. Statistics changes can imply needs for
recreating indexes for better response time.

 Knowledge about administering relational database engine,
its functionality and performance problems has potentially
large impact on future work and research. Good architecture
for scientific data management needs to take them all into
consideration.

REFERENCES
[1] J. Gray, et al.: “Scientific Data Management in the Coming Decade”

Microsoft Research Technical Report MSR-TR- 2005-10, 2005, available
at: http://arxiv.org/ftp/cs/papers/0502/0502008.pdf

[2] F. E. Karaoulanis, C.G. Panagiotopoulos, E.A. Paraskevopoulos, “Recent
developments in Finite Element programming”, First South-East
European Conference on Computational Mechanics, SEECCM-06,
Kragujevac, Serbia and Montenegro, June 28-30, 2006.

[3] G. Heber, J. Gray, “Supporting Finite Element Analysis with a Relational
Database Backend”, Technical Report MSR-TR-2005-49, April 2005,
available at: http://research.microsoft.com/apps/pubs/default.aspx?id=
64535.

[4] J. Peng, D. Liu, K. H. Law, “An Online Data Access System for a Finite
Element Program”, http://eig.stanford.edu/publications/jun_peng/
data_access_system.doc.

[5] R. I. Mackie, “Using Objects to Handle Complexity in Finite Element
Software”, Engineering with Computers, 13(2), 1997, pp 99-111.

[6] P. Gulutzan, T. Pelzer, “SQL Performance Tuning”. Addison-Wesley
Professional, Boston, 2003.

[7] S. Dam, G. Fritchey, “SQL Server 2008 Query Performance Tuning
Distilled”, Apress, New York, 2009.

[8] K. Delaney, “Inside Microsoft SQL Server 2005”, The storage engine,
Microsoft Press, Redmond 2007.

[9] J. Nazdrowicz, “A Relational Database Environment for Numerical
Simulation Backend Storage”, Proceedings of the 22nd International
Conference "Mixed Design of Integrated Circuits and Systems", June 25-
27, 2015, Torun, Poland.

[10] K. Delaney, “Inside Microsoft SQL Server 2005. The Storage Engine.”
Microsoft Press, Redmond 2007, pp. 375-380.

Jacek Nazdrowicz was born in Podd bice, Poland,
in 1975. He received the MSc degrees in Technical
Physics, Computer Sciences and Marketing and
Management from the Lodz University of
Technology, Poland, in 1999, 2000 and 2001
respectively and the PhD degree in Economics
Sciences, Management discipline, in Lodz
University of Technology, in 2013.
From 2014 he attends doctoral study in Lodz
University of Technology, electronics discipline. His
research interests include modelling and simulation

MEMS devices and their application in medicine. He also participates in
EduMEMS project (Developing Multidomain MEMS Models for Educational
Purposes).
Since 2007 he also works in mBank as a System Engineer of SQL Server
databases. He has the following certifications: MCSA Windows 2012,
MS SQL Server 2012 and Storage Area Network (SAN) Specialist.

