
Abstract—Floating point (FP) multiply-accumulate (MAC) 
represents one of the most important operations in a wide range 
of applications, such as DSP, multimedia or graphic processing. 
This paper presents a FP MAC half precision (16-bit) FPGA 
implementation. The main contribution of this work is 
represented by the utilization of modern FPGA DSP block for 
performing both mantissa multiplication and mantissa 
accumulation. In order to use the DSP block for these operations, 
the alignment right shifts are performed before the multiply-add 
stage: a right shift on one of the multiplicand, and, a left shift for 
the other. This results in efficient DSP usage; thus both cost 
savings and higher performance (high working frequencies and 
low latencies) are targeted for MAC operations. 
 

Index Terms—Digital Arithmetic, Floating Point Arithmetic, 
FPGA, Multiply-Accumulate; Dot-Product  
 

I. INTRODUCTION 
ULTIPLY-ACCUMULATE or dot-product represents the 
most important arithmetic operation in application 

which require convolution or matrix-multiplications, such as: 
DSP, image processing, graphic processing, scientific 
computing, etc [2][4][8][10][15]. A dedicated architecture for 
this critical operation has two major advantages: increased 
accuracy (due to a single rounding operation with respect for 
multiple roundings performed for each multiplication and 
addition) and increased performance.  

This paper proposes a new MAC FPGA implementation for 
half precision format (16 bit) of IEEE 754 FP numbers. The 
main module of the proposed MAC is represented by the DSP 
block, which is used for performing both the mantissa 
multiplication and accumulation sub-operations. This 
represents a novel approach in optimizing MAC operation in 
FPGA devices; related architectures use the DSP blocks in 
order to perform only the multiplication in the mantissa 
datapath; the accumulation is computed using conventional 
slices. The proposed approach has been implemented on 
Xilinx FPGA devices which use DSP48E or DSP48E1 block; 
these modules contain a 25x18 bit two’s complement 
multiplier and a 48-bit adder/accumulator [16]. In order to use 
the DSP48E or DSP48E1 block for both multiplication and 
accumulation, alignment shifting needs to be performed before 
the multiplication.  
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This paper is organized as follows: Section II presents 
related multiply-add fused and multiply-accumulate 
architectures, modern DSP blocks’ structure are depicted in 
Section III, while Section IV is dedicated to the proposed 
MAC implementation.  

II. FLOATING POINT MULTIPLY-ACCUMULATE 

A. Algorithm 
The FP multiply-accumulate represents the consecutive 

addition between multiple products. It is very similar to the FP 
multiply-add fused. It comprises of the following steps 
[9][15][17]: 

1. Exponent processing – the exponent of the product is 
computed by adding the two exponents and subtracting 
the bias; the difference between the product exponents’ 
and the accumulator’s exponent is computed in order to 
determine the alignment shifting; 

2. Mantissa multiplication – the product between 
mantissa’s of the new pair of operands is computed; 

3. Alignment shifting – shifting is performed to the product 
for alignment; the shift amount has been determined in 
the exponent processing phase; 

4. Mantissa accumulation – the shifted product is 
accumulated to the previous sum; 

5. Leading zero detection – this step is necessary in the 
normalization process; 

6. Normalization – this step is performed by a mantissa 
left-shift; the amount of left-shifting is determined in the 
leading zero detection step; an exponent update has to be 
performed in parallel;  

7. Rounding – rounding is performed according to the 
required rounding algorithm, by a possible addition of  
1 ulp to the mantissa; 

The major difference between MAC and multiply-add fused 
is represented by the way in which steps 1-4 are performed. 
For multiply-add fused, they are performed only once, because 
only one multiplication and one addition are involved. In 
MAC, multiple multiplications and accumulations are 
required. Therefore, steps 1-4 are performed multiple times 
(depending on the number of the products). Furthermore, 
compared to multiply-add fused, the MAC does not have 
inputs for the addend. Another major feature of the MAC 
operation is the fact that steps 5-7 are performed only once 
(when all the accumulations between the products are 
executed) [4]. 
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B. FPGA implementations 
Although MAC operations are frequent in a wide range of 

applications (such as the ones which rely on convolution or 
matrix multiplications), few such architectures have been 
proposed. For example, in a wide range of matrix multipliers 
[2][6][8][10], the FP MAC operation is performed using a 
separate FP multiplier and FP adder. Several enhancements 
can be obtained if dedicated FP accumulators are used to add 
the result of FP multiplier [14]. However, the drawback of this 
approach is represented by the rounding operation during the 
multiplication (which decreases the accuracy). 

Regarding dedicated MAC architectures, such have been 
proposed in [4][11][13]. The approach in [13] is straight-
forward implementation of an ASIC implementation for an 
IEEE single precision MAC. The multiplication is performed 
using conventional slices, similar to the tree multipliers used 
in ASIC. The alignment shifting of the product is performed 
after the multiplication step. 

A highly versatile multiply-accumulate architecture is the 
one implemented in FloPoCo [3][4]. FloPoco dot-product 
operators [4] have a wide range of configuration parameters: 
FP precision, accumulator precision, frequency target, etc. The 
product alignment shifting is performed after the 
multiplication. The multiplication can be implemented using 
DSP blocks only, slices only, or a combination of both. An 
important feature of the FloPoCo dot-product is the fact that 
the MAC part is separated from the FP conversion part (which 
performs leading zero detection, normalization and rounding). 
This is motivated by the low number of conversions with 
respect to accumulation in applications which require large 
convolutions or matrix multiplications. The FloPoCo tool 
generates a generic and configurable RTL code. The generated 
MAC architectures do not use highly dedicated features of the 
FPGA building blocks (DSP or slices). Thus, the FloPoCo 
approach targets mostly portability and configurability, rather 
than performance and cost savings obtained through device 
based optimizations. 

Configurable dot-product architectures which can perform 
both FP and fixed point operations are presented in [11]. The 
main feature of these units is represented by the parallel 
computation of the products. Therefore, these architectures do 
not require feedback accumulation of products. The main 
disadvantage is represented by the high cost, due to the large 
number of multipliers required. 

TABLE I  
FPGAS FP MAC ARCHITECTURES 

Architecture IEEE 
Precision 

Product 
Alignment 

Multiplier
Type Device 

FloPoCo  
DotProduct+ 

LongAcc2FP[4] 
Generic After Mult. Generic Generic 

Single Precision  
Dot-Product [13] 

Single  
Precision After Mult. Slice 

based Generic 

Hybrid FP/Int  
Dot-Product [11] 

Single Precision 
Input/Output 

Variable Internal 
Accumulation 

After Mult. DSP based Generic 

Proposed Half  
Precision Before Mult. DSP based Virtex-4,5,6

7 Series 

Table I presents the related approaches for the MAC and 
dot-product approaches. Our approach is similar to the ones in 
[4][13]: it relies on only one multiplier, and thus the 
multiplications in the dot-product are performed in a serial 
manner. Compared with the [4][13], the main contributions of 
the proposed approach are: 

1. It uses the DSP block for both multiplication and 
accumulation. 

2. The alignment shift operations are performed on the 
multiplicands and not the product  

The present work is an extension of the FP multiply add 
fused presented in [1]. However, the DSP block and other 
components of the architecture (exponent processing, 
alignment shifting) have been tailored in order to 
accommodate multiple accumulation of products and not the 
addition of an addend with a product.  

III. DSP BLOCK ARCHITECTURE 
FPGA’s DSP blocks have been incorporated in order to 

increase the performance and to lower power consumption in a 
wide range of applications, such as DSP, multimedia, scientific 
computing, etc. Early days DSP blocks have included only a 
two’s complement integer multiplier. Modern FPGA devices’ 
DSP blocks have increased functionality, which in many 
aspects is similar to the datapath processing in a conventional 
processing core. Another feature of these units is represented 
by the lack of standardization: different architecture and 
functionality are found in different FPGA families [3]. The 
DSP block architecture used in this work is Xilinx DSP48E or 
DSP48E1, which is part of the Virtex-4, Virtex-5, Virtex-6 and 
7 Series FPGA devices [16]. The structure of the DSP48E1 is 
depicted in Fig. 1. Its main arithmetic components are the 
25x18 bits two’s complement multiplier and the 48-bit ALU. 
The ALU has several functionalities, such as carry propagate 
adder, subtracter or logic functions. Furthermore, selection of 
the ALU’s inputs is possible. One input can be selected 
between the product and one of the multiplicands (in this case 
the multiplier is bypassed). The possible cases for the second 
 

 
Fig. 1. Xilinx Virtex-5 DSP48E structure [16] 



ALU input are: C DSP block input, the previous result of the 
ALU, or the result of a neighboring ALU. The first option is 
useful for multiply-add fused operations; selecting the previous 
results of the adder is required in MAC; the result from the 
adjacent DSP block is needed when performing large precision 
multiplication.  

IV. PROPOSED HALF PRECISION MAC 
A. Proposed architecture 

The proposed half precision (1 bit of sign, 5 bits of 
exponent and 10+1 bits of mantissa) MAC unit is composed of 
the following modules: 

1. Exponent processing – it computes the exponent of the 
product and the alignment shifting; the former is 
calculated subtracting the first product’s exponent from 
the current exponent. 

2. Alignment shifting – in the proposed MAC unit the 
alignment shift is performed before the computation of 
the product; right-shift alignment is performed to the 
multiplicand fed to the 18-bits DSP input, while the 
multiplicand fed to the 25-bits DSP input is left shifted 
for alignment; the two shifts are mutually exclusive; the 
alignment shifts are computed with respect to the first 
product.  

3. Mantissa multiply-accumulation – the multiplication 
and the accumulation of mantissas are done as a single 
operation using the DSP block. 

4. Leading zero detection – a tree based leading zero 
detector is used for counting leading zeros [12]; 

5. Normalization – a left shifter is used for mantissa 
normalization; an exponent update is performed; the 
amount of left-shifting is determined by the number of 
leading zeros. 

6. Rounding – a carry-propagate adder is used in order to 
implement the rounding operation; an overflow may 
appear after rounding, which requires a one position 
mantissa right-shift. 

The proposed unit is depicted in Fig. 2. Implementing the 
mantissas multiplication and accumulation as a single 
operation using one DSP block introduces two limitations, due 
to the limited size of the multiplicands (24-bits and 17-bits 
unsigned) in the DSP’s multiplier. For half precision formats, 
the maximum exponent’s difference is 31, which may result in 
a 31-position alignment shifting.  

Regarding the right-shift alignment, the maximum number 
of positions which guarantee no loss in precision is 6 (the 
difference between the size of the DSP block multiplicand (17) 
and the size of the mantissa (11)). For more than 6-bit right-
shift, a precision loss will appear. Regarding the left-shift 
alignment, the maximum number of positions allowed by the 
proposed design is 13 (the difference between the size of the 
DSP block multiplicand (24) and the size of the mantissa (11)). 
For more than 13-bit left-shift, most significant bits of the 
result will be lost. Therefore, the proposed MAC can handle 
accumulation of numbers which do not have very high 
exponent differences. However, in most applications requiring 
MAC (such as DSP or graphic processing), these cases are rare.  

 
Fig. 2. Proposed 8-pipeline MAC unit (grey box indicate the pipeline registers) 

Eight pipeline stages have been implemented (see Fig. 2).  
In order to increase both the working frequency and the cost 
efficiency, the following built-in pipeline registers within the 
DSP blocks are used: the registers latching the multiplicands, 
the register corresponding to the product and the register 
latching the accumulation result. The pipeline stages in the 
proposed architecture are:  

 Exponents processing stage;  
 Alignment shifting stage; 
 DSP stages (1 stage for multiplication and 1 for 

accumulation) 
 Leading zero detection stage 
 Normalization stage 
 Rounding stages (2 stages)  
The first four stages are part of the accumulation pipeline, 

and are executed for each multiplication in the MAC. The last 
four stages are computed once, at the end of operation.  

B. Results 
Table II depicts the synthesis results for Xilinx Virtex-5 

(which incorporates DSP48E block) and Xilinx Virtex-7 
(which incorporates DSP48E1 block). With respect to the 



FloPoCo approach, the proposed MAC presents a similar cost, 
and a lower working frequency. However, the performance of 
the proposed architecture is higher, as the presented MAC has 
8 pipeline stages at around 300 MHz, while the FloPoCo has 
12 pipeline stages at around 360 MHz. Regarding the dot-
product approach in [11], the results are given for single 
precision (32-bit format). Although straightforward 
comparison is impossible to perform, the architecture 
presented in [11] has some disadvantages compared to our 
approach. The [11] dot-product relies on parallel 
multiplication, which requires multiple DSP blocks. 
Therefore, even a half-precision implementation would require 
multiple parallel DSP blocks. Thus, the dot-product unit 
would have an increased cost compared to our architecture 
(especially in terms of DSP block count). Furthermore, it lacks 
flexibility, because it cannot perform MAC operations with 
more multiplications than the parallel multiplier modules 
incorporated. 

TABLE II 
SYNTHESIS RESULTS & COMPARISSONS 

Architecture Performance Cost Device 
Proposed  
 

8 stages 
298 MHz 

1 DSP 
455 LUT-FF pairs 

Xilinx Virtex-5 
-3 speed grade 

Proposed 
 

8 stages 
378 MHz 

1 DSP 
408 LUT-FF pairs 

Xilinx Virtex-7 
-2 speed grade 

FloPoCo [4] 
16-bit IEEE 
34 bit accumulate 
400 MHz target 

12 stages 
369 MHz 

1 DSP 
434 LUT-FF pairs 

Xilinx Virtex-5 
-3 speed grade 

Hybrid FP/Int Dot 
Product [11] 
32 bit FP 

275 MHz for  
65 bit acc 
400 MHz for 
10 bit acc 

n DSPs (n –  
number of 
multiplications) 
1000 LUT- FF pairs 

Xilinx Virtex-6 

V. CONCLUSIONS 
This paper proposes FPGA based architectures for half 

precision FP MAC which exploits modern FPGA features for 
increased performance and cost efficiency.  The main 
contributions of this paper are: 

1. Merging the multiplication and the accumulation into a 
single step – we have exploited the built-in multiplier and 
accumulator within the modern DSP blocks for in order 
to achieve this goal  

2. Performing the alignment shifting on the multiplicands – 
in order to implement the first contribution, alignment 
shifting has to be performed before the multiplication; 
thus, compared to other approaches, we perform shifting 
on multiplicands, rather than the product. 

We have performed device based optimization for the MAC 
operation, thus resulting in a performance increase of up to 
20% compared with at a similar cost.  This represents a similar 
approach, which has been used for FP addition and 
multiplication [5][7]. 

The proposed unit has two disadvantages:  
1. Low flexibility – our architecture has been designed in 

order to take advantage of the Xilinx DSP48E and 
DSP48E1 blocks; “porting” to other devices needs 
rework  

2. Precision loss for great alignment shifts – this limitation 
is due to the limited size of DSP block’s multiplicands 
size. 

Therefore, regarding FPGA FP design, the main tradeoff is 
represented by performance and cost improvements using 
device based optimizations versus flexibility/portability of FP 
units (i.e. reduced design time).  
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