
Abstract—Floating point (FP) multiply-accumulate (MAC)
represents one of the most important operations in a wide range
of applications, such as DSP, multimedia or graphic processing.
This paper presents a FP MAC half precision (16-bit) FPGA
implementation. The main contribution of this work is
represented by the utilization of modern FPGA DSP block for
performing both mantissa multiplication and mantissa
accumulation. In order to use the DSP block for these operations,
the alignment right shifts are performed before the multiply-add
stage: a right shift on one of the multiplicand, and, a left shift for
the other. This results in efficient DSP usage; thus both cost
savings and higher performance (high working frequencies and
low latencies) are targeted for MAC operations.

Index Terms—Digital Arithmetic, Floating Point Arithmetic,
FPGA, Multiply-Accumulate; Dot-Product

I. INTRODUCTION
ULTIPLY-ACCUMULATE or dot-product represents the
most important arithmetic operation in application

which require convolution or matrix-multiplications, such as:
DSP, image processing, graphic processing, scientific
computing, etc [2][4][8][10][15]. A dedicated architecture for
this critical operation has two major advantages: increased
accuracy (due to a single rounding operation with respect for
multiple roundings performed for each multiplication and
addition) and increased performance.

This paper proposes a new MAC FPGA implementation for
half precision format (16 bit) of IEEE 754 FP numbers. The
main module of the proposed MAC is represented by the DSP
block, which is used for performing both the mantissa
multiplication and accumulation sub-operations. This
represents a novel approach in optimizing MAC operation in
FPGA devices; related architectures use the DSP blocks in
order to perform only the multiplication in the mantissa
datapath; the accumulation is computed using conventional
slices. The proposed approach has been implemented on
Xilinx FPGA devices which use DSP48E or DSP48E1 block;
these modules contain a 25x18 bit two’s complement
multiplier and a 48-bit adder/accumulator [16]. In order to use
the DSP48E or DSP48E1 block for both multiplication and
accumulation, alignment shifting needs to be performed before
the multiplication.

This work was supported by the Romanian Research Council PNII-RU-
TE-3-2011-0186 FLAG research grant.

A. Amaricai, O. Boncalo and O. Sicoe are with Department of Computer
Engineering, University Politehnica of Timisoara, Timisoara, Romania (email:
alexandru.amaricai@cs.upt.ro)

This paper is organized as follows: Section II presents
related multiply-add fused and multiply-accumulate
architectures, modern DSP blocks’ structure are depicted in
Section III, while Section IV is dedicated to the proposed
MAC implementation.

II. FLOATING POINT MULTIPLY-ACCUMULATE

A. Algorithm
The FP multiply-accumulate represents the consecutive

addition between multiple products. It is very similar to the FP
multiply-add fused. It comprises of the following steps
[9][15][17]:

1. Exponent processing – the exponent of the product is
computed by adding the two exponents and subtracting
the bias; the difference between the product exponents’
and the accumulator’s exponent is computed in order to
determine the alignment shifting;

2. Mantissa multiplication – the product between
mantissa’s of the new pair of operands is computed;

3. Alignment shifting – shifting is performed to the product
for alignment; the shift amount has been determined in
the exponent processing phase;

4. Mantissa accumulation – the shifted product is
accumulated to the previous sum;

5. Leading zero detection – this step is necessary in the
normalization process;

6. Normalization – this step is performed by a mantissa
left-shift; the amount of left-shifting is determined in the
leading zero detection step; an exponent update has to be
performed in parallel;

7. Rounding – rounding is performed according to the
required rounding algorithm, by a possible addition of
1 ulp to the mantissa;

The major difference between MAC and multiply-add fused
is represented by the way in which steps 1-4 are performed.
For multiply-add fused, they are performed only once, because
only one multiplication and one addition are involved. In
MAC, multiple multiplications and accumulations are
required. Therefore, steps 1-4 are performed multiple times
(depending on the number of the products). Furthermore,
compared to multiply-add fused, the MAC does not have
inputs for the addend. Another major feature of the MAC
operation is the fact that steps 5-7 are performed only once
(when all the accumulations between the products are
executed) [4].

FPGA Implementations of Low Precision
Floating Point Multiply-Accumulate

Alexandru Amaricai, Oana Boncalo, and Ovidiu Sicoe

M

B. FPGA implementations
Although MAC operations are frequent in a wide range of

applications (such as the ones which rely on convolution or
matrix multiplications), few such architectures have been
proposed. For example, in a wide range of matrix multipliers
[2][6][8][10], the FP MAC operation is performed using a
separate FP multiplier and FP adder. Several enhancements
can be obtained if dedicated FP accumulators are used to add
the result of FP multiplier [14]. However, the drawback of this
approach is represented by the rounding operation during the
multiplication (which decreases the accuracy).

Regarding dedicated MAC architectures, such have been
proposed in [4][11][13]. The approach in [13] is straight-
forward implementation of an ASIC implementation for an
IEEE single precision MAC. The multiplication is performed
using conventional slices, similar to the tree multipliers used
in ASIC. The alignment shifting of the product is performed
after the multiplication step.

A highly versatile multiply-accumulate architecture is the
one implemented in FloPoCo [3][4]. FloPoco dot-product
operators [4] have a wide range of configuration parameters:
FP precision, accumulator precision, frequency target, etc. The
product alignment shifting is performed after the
multiplication. The multiplication can be implemented using
DSP blocks only, slices only, or a combination of both. An
important feature of the FloPoCo dot-product is the fact that
the MAC part is separated from the FP conversion part (which
performs leading zero detection, normalization and rounding).
This is motivated by the low number of conversions with
respect to accumulation in applications which require large
convolutions or matrix multiplications. The FloPoCo tool
generates a generic and configurable RTL code. The generated
MAC architectures do not use highly dedicated features of the
FPGA building blocks (DSP or slices). Thus, the FloPoCo
approach targets mostly portability and configurability, rather
than performance and cost savings obtained through device
based optimizations.

Configurable dot-product architectures which can perform
both FP and fixed point operations are presented in [11]. The
main feature of these units is represented by the parallel
computation of the products. Therefore, these architectures do
not require feedback accumulation of products. The main
disadvantage is represented by the high cost, due to the large
number of multipliers required.

TABLE I
FPGAS FP MAC ARCHITECTURES

Architecture IEEE
Precision

Product
Alignment

Multiplier
Type Device

FloPoCo
DotProduct+

LongAcc2FP[4]
Generic After Mult. Generic Generic

Single Precision
Dot-Product [13]

Single
Precision After Mult. Slice

based Generic

Hybrid FP/Int
Dot-Product [11]

Single Precision
Input/Output

Variable Internal
Accumulation

After Mult. DSP based Generic

Proposed Half
Precision Before Mult. DSP based Virtex-4,5,6

7 Series

Table I presents the related approaches for the MAC and
dot-product approaches. Our approach is similar to the ones in
[4][13]: it relies on only one multiplier, and thus the
multiplications in the dot-product are performed in a serial
manner. Compared with the [4][13], the main contributions of
the proposed approach are:

1. It uses the DSP block for both multiplication and
accumulation.

2. The alignment shift operations are performed on the
multiplicands and not the product

The present work is an extension of the FP multiply add
fused presented in [1]. However, the DSP block and other
components of the architecture (exponent processing,
alignment shifting) have been tailored in order to
accommodate multiple accumulation of products and not the
addition of an addend with a product.

III. DSP BLOCK ARCHITECTURE
FPGA’s DSP blocks have been incorporated in order to

increase the performance and to lower power consumption in a
wide range of applications, such as DSP, multimedia, scientific
computing, etc. Early days DSP blocks have included only a
two’s complement integer multiplier. Modern FPGA devices’
DSP blocks have increased functionality, which in many
aspects is similar to the datapath processing in a conventional
processing core. Another feature of these units is represented
by the lack of standardization: different architecture and
functionality are found in different FPGA families [3]. The
DSP block architecture used in this work is Xilinx DSP48E or
DSP48E1, which is part of the Virtex-4, Virtex-5, Virtex-6 and
7 Series FPGA devices [16]. The structure of the DSP48E1 is
depicted in Fig. 1. Its main arithmetic components are the
25x18 bits two’s complement multiplier and the 48-bit ALU.
The ALU has several functionalities, such as carry propagate
adder, subtracter or logic functions. Furthermore, selection of
the ALU’s inputs is possible. One input can be selected
between the product and one of the multiplicands (in this case
the multiplier is bypassed). The possible cases for the second

Fig. 1. Xilinx Virtex-5 DSP48E structure [16]

ALU input are: C DSP block input, the previous result of the
ALU, or the result of a neighboring ALU. The first option is
useful for multiply-add fused operations; selecting the previous
results of the adder is required in MAC; the result from the
adjacent DSP block is needed when performing large precision
multiplication.

IV. PROPOSED HALF PRECISION MAC
A. Proposed architecture

The proposed half precision (1 bit of sign, 5 bits of
exponent and 10+1 bits of mantissa) MAC unit is composed of
the following modules:

1. Exponent processing – it computes the exponent of the
product and the alignment shifting; the former is
calculated subtracting the first product’s exponent from
the current exponent.

2. Alignment shifting – in the proposed MAC unit the
alignment shift is performed before the computation of
the product; right-shift alignment is performed to the
multiplicand fed to the 18-bits DSP input, while the
multiplicand fed to the 25-bits DSP input is left shifted
for alignment; the two shifts are mutually exclusive; the
alignment shifts are computed with respect to the first
product.

3. Mantissa multiply-accumulation – the multiplication
and the accumulation of mantissas are done as a single
operation using the DSP block.

4. Leading zero detection – a tree based leading zero
detector is used for counting leading zeros [12];

5. Normalization – a left shifter is used for mantissa
normalization; an exponent update is performed; the
amount of left-shifting is determined by the number of
leading zeros.

6. Rounding – a carry-propagate adder is used in order to
implement the rounding operation; an overflow may
appear after rounding, which requires a one position
mantissa right-shift.

The proposed unit is depicted in Fig. 2. Implementing the
mantissas multiplication and accumulation as a single
operation using one DSP block introduces two limitations, due
to the limited size of the multiplicands (24-bits and 17-bits
unsigned) in the DSP’s multiplier. For half precision formats,
the maximum exponent’s difference is 31, which may result in
a 31-position alignment shifting.

Regarding the right-shift alignment, the maximum number
of positions which guarantee no loss in precision is 6 (the
difference between the size of the DSP block multiplicand (17)
and the size of the mantissa (11)). For more than 6-bit right-
shift, a precision loss will appear. Regarding the left-shift
alignment, the maximum number of positions allowed by the
proposed design is 13 (the difference between the size of the
DSP block multiplicand (24) and the size of the mantissa (11)).
For more than 13-bit left-shift, most significant bits of the
result will be lost. Therefore, the proposed MAC can handle
accumulation of numbers which do not have very high
exponent differences. However, in most applications requiring
MAC (such as DSP or graphic processing), these cases are rare.

Fig. 2. Proposed 8-pipeline MAC unit (grey box indicate the pipeline registers)

Eight pipeline stages have been implemented (see Fig. 2).
In order to increase both the working frequency and the cost
efficiency, the following built-in pipeline registers within the
DSP blocks are used: the registers latching the multiplicands,
the register corresponding to the product and the register
latching the accumulation result. The pipeline stages in the
proposed architecture are:

 Exponents processing stage;
 Alignment shifting stage;
 DSP stages (1 stage for multiplication and 1 for

accumulation)
 Leading zero detection stage
 Normalization stage
 Rounding stages (2 stages)
The first four stages are part of the accumulation pipeline,

and are executed for each multiplication in the MAC. The last
four stages are computed once, at the end of operation.

B. Results
Table II depicts the synthesis results for Xilinx Virtex-5

(which incorporates DSP48E block) and Xilinx Virtex-7
(which incorporates DSP48E1 block). With respect to the

FloPoCo approach, the proposed MAC presents a similar cost,
and a lower working frequency. However, the performance of
the proposed architecture is higher, as the presented MAC has
8 pipeline stages at around 300 MHz, while the FloPoCo has
12 pipeline stages at around 360 MHz. Regarding the dot-
product approach in [11], the results are given for single
precision (32-bit format). Although straightforward
comparison is impossible to perform, the architecture
presented in [11] has some disadvantages compared to our
approach. The [11] dot-product relies on parallel
multiplication, which requires multiple DSP blocks.
Therefore, even a half-precision implementation would require
multiple parallel DSP blocks. Thus, the dot-product unit
would have an increased cost compared to our architecture
(especially in terms of DSP block count). Furthermore, it lacks
flexibility, because it cannot perform MAC operations with
more multiplications than the parallel multiplier modules
incorporated.

TABLE II
SYNTHESIS RESULTS & COMPARISSONS

Architecture Performance Cost Device
Proposed

8 stages
298 MHz

1 DSP
455 LUT-FF pairs

Xilinx Virtex-5
-3 speed grade

Proposed

8 stages
378 MHz

1 DSP
408 LUT-FF pairs

Xilinx Virtex-7
-2 speed grade

FloPoCo [4]
16-bit IEEE
34 bit accumulate
400 MHz target

12 stages
369 MHz

1 DSP
434 LUT-FF pairs

Xilinx Virtex-5
-3 speed grade

Hybrid FP/Int Dot
Product [11]
32 bit FP

275 MHz for
65 bit acc
400 MHz for
10 bit acc

n DSPs (n –
number of
multiplications)
1000 LUT- FF pairs

Xilinx Virtex-6

V. CONCLUSIONS
This paper proposes FPGA based architectures for half

precision FP MAC which exploits modern FPGA features for
increased performance and cost efficiency. The main
contributions of this paper are:

1. Merging the multiplication and the accumulation into a
single step – we have exploited the built-in multiplier and
accumulator within the modern DSP blocks for in order
to achieve this goal

2. Performing the alignment shifting on the multiplicands –
in order to implement the first contribution, alignment
shifting has to be performed before the multiplication;
thus, compared to other approaches, we perform shifting
on multiplicands, rather than the product.

We have performed device based optimization for the MAC
operation, thus resulting in a performance increase of up to
20% compared with at a similar cost. This represents a similar
approach, which has been used for FP addition and
multiplication [5][7].

The proposed unit has two disadvantages:
1. Low flexibility – our architecture has been designed in

order to take advantage of the Xilinx DSP48E and
DSP48E1 blocks; “porting” to other devices needs
rework

2. Precision loss for great alignment shifts – this limitation
is due to the limited size of DSP block’s multiplicands
size.

Therefore, regarding FPGA FP design, the main tradeoff is
represented by performance and cost improvements using
device based optimizations versus flexibility/portability of FP
units (i.e. reduced design time).

REFERENCES
[1] A. Amaricai, O. Boncalo, C.E. Gavriliu, “Low Precision DSP Based

Floating Point Multiply-Add Fused for FPGAs”, submitted to IET
Computing & Digital Techniques, 2013

[2] F. Bensaali, A. Amira, R. Sotudeh, “Floating-point matrix product on
FPGA”, Proc. IEEE/ACS Int. Conf. on Computer Systems and
Applications, pp. 466-473, 2007

[3] F. de Dinechin, B. Pasca, “Designing custom arithmetic data paths with
FloPoCo” IEEE Design and Test of Computers, Vol. 28, Issue 4, pp. 18-
27, 2011

[4] F. de Dinechin, B. Pasca, O. Cret, R. Tudoran, “An FPGA-specific
approach to floating-point accumulation and sum-of-products” Proc.
2008 Int. Conf. on Field Programmable Technology (FPT), pp. 33-40,
2008

[5] K.S. Hemmert, K.D. Underwood, “Fast, Efficient Floating-Point Adders
and Multipliers for FPGAs”, ACM. Tran.s on Reconfigurable
Technology and Systems (TRETS), Vol. 3, Issue 3, Art. No. 11, 2010

[6] B. Holanda, R. Pimentel, J. Barbosa, R. Camarotti, A. Silva-Filho,
L. João, V. Souza, J. Ferraz, M. Lima, “An FPGA-Based Accelerator to
Speed-Up Matrix Multiplication of Floating Point Operations”, Proc.
2011 IEEE Int. Symp. on Parallel and Distributed Processing Workshops
and PhD Forum, pp. 306-309, 2011

[7] M. K. Jaiswal, R.C.C. Cheung, “Area-efficient architectures for double
precision multiplier on FPGA, with run-time-reconfigurable dual single
precision support” Microelectronics Journal, Vol. 44, Issue 5, pp. 421-
430, 2013

[8] Z. Jovanovic, V. Milutinovic, “FPGA accelerator for floating-point
matrix multiplication” IET Computer and Digital Techniques, Vol. 6,
Issue 4, 249-256, 2012

[9] T. Lang, J.D. Bruguera, “Floating-Point Fused Multiply-Add with
Reduced Latency” Proc. 2002 IEEE Int. Conf. on Computer Design
(ICCD) ,pp.145-150, 2002

[10] M. deLorimier, A. DeHon, “Floating-Point Sparse Matrix-Vector
Multiply for FPGAs” Proc. ACM/SIGDA 13th Int. Symp. On Field
Programmable Gate Arrays (FPGA), pp. 75-85, 2005

[11] A.R. Lopes, G. Constantinides, “A fused hybrid floating-point and
fixed-point dot-product for FPGAs” Proc. 6th Int. Conf. on
Reconfigurable Computing: Architectures, Tools and Applications
(ARC’10), pp. 157-168, 2010

[12] V.G. Oklobdzija, “An algorithmic and novel design of a leading zero
detector circuit: Comparison with logic synthesis”, IEEE Trans. On
VLSI Systems, Vol.2, Issue 1, pp. 124-128, 1994

[13] A. Paidimari, A. Cevrero, P. Brisk, P. Ienne, “FPGA Implementation of
a Single-Precision Floating-Point Multiply-Accumulator with Single-
Cycle Accumulation” Proc. 17th IEEE Symp. On Field Programmable
Custom Computing Machines (FCCM), pp. 267-270, 2009

[14] S. Sun, J. Zambreno, “A Floating-point Accumulator for FPGA-based
High Performance Computing Applications”, Proc. 2009 Int. Conf. on
Field Programmable Technology (FPT), pp. 493-499, 2009

[15] Y. Tao, G. Deyuan, D. Xiaoya, J. Nurmi, “Correctly Rounded
Architectures for Floating-Point Multi-Operand Addition and Dot-
Product Computation”, Proc. 24th IEEE Conf. on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 346-355, 2013

[16] Xilinx, “Virtex-5 FPGA XtremeDSP Design Considerations” – User
Guide, 2012

[17] A.M. Zaki, M.H. El-Shafey, A.M.B. Eldin, G.M. Ali, “A New
Architecture for Accurate Dot Product of Floating Point Numbers” Proc.
2010 Int. Conf. on Computer Engineering and Systems, pp. 139-145,
2010

Alexandru Amaricai has received his Dipl. Eng.
from University Politehnica of Timisoara in 2006 and
his PhD Degree in Computer Engineering from the
same university in 2009. Since 2011, he is Assistant
Professor in the Mobile and Embedded Systems
Research Group within the Computer Engineering
Department from University Politehnica of
Timisoara. His main research areas include floating
point arithmetic, FPGA design and digital systems
reliability.

Oana Boncalo has received his Dipl. Eng. from
University Politehnica of Timisoara in 2006 and his
PhD Degree in Computer Engineering from the same
university in 2009. Since 2011, she is Assistant
Professor in the Mobile and Embedded Systems
Research Group within the Computer Engineering
Department from University Politehnica of
Timisoara. Her main research interests include
reliability evaluation and fault modeling, FPGA
design and FPGA implementation of forward error
correction schemes.

Ovidiu Sicoe has received his BSc. in Computer
Engineering from University Politehnica of Timisoara
in 2011 and his MSc. degree in 2013. He is currently
pursuing the PhD. Degree in Computer Engineering
from the same university. His main research interests
include floating point arithmetic and graphic
accelerators design.

