
�Abstract—In this paper we present a MOSFET-only 
implementation of a balun LNA. This LNA is based on the 
combination of a common-gate and a common-source stage with 
cancellation of the noise of the common-gate stage. In this circuit, 
we replace resistors by transistors, to reduce area and cost, and 
to minimize the effect of process and supply variations and 
mismatches. In addition, we obtain a higher gain for the same 
voltage drop. Thus, the LNA gain is optimized and the noise 
figure (NF) is reduced. We derive equations for the gain, input 
matching and NF. The performance of this new topology is 
compared with that of a conventional LNA with resistors. 
Simulation results with a 130 nm CMOS technology show that we 
obtain a balun LNA with a peak gain of 20.2 dB (about 2 dB 
improvement), and a spot NF lower than 2.4 dB. The total power 
consumption is only 4.8 mW for a bandwidth higher than 6 GHz. 
 

Index Terms—CMOS LNAs, MOSFET-only circuits, Noise 
cancelling, Wideband LNA. 

I. INTRODUCTION 
OWADAYS, the demand for mobile and portable 
equipment has led to a large increase in wireless 

communication applications. In order to achieve full 
integration and low cost, modern receiver architectures (Low-
IF and Zero-IF receivers), require inductorless circuits [1 - 4]. 
The LNA, which is a key block in the design of such 
receivers, is investigated in this paper. 

LNAs can be either narrowband or wideband [1, 2]. 
Narrowband LNAs use inductors and have very low noise 
figure, but they occupy a large area and require a technology 
with RF options to have inductors with high Q. Wideband 
LNAs with multiple narrowband inputs have low noise, but 
their designs are complicated and the area and cost are high  
[1, 2]. RC LNAs are very simple and inherently wideband, but 
conventional topologies have large noise figures (NFs). 
Recently, wideband LNAs with noise and distortion cancelling 
[5] have been proposed, which can have NFs below 3 dB.  

Inductorless circuits have reduced die area and cost [4]. 
 

This work was supported by the Portuguese Foundation for Science and 
Technology (CTS-UNINOVA and INESC-ID multiannual funding and project 
TARDE (PTDC/EEA-ELC/ 65710/2006)) through the PIDDAC Program funds. 

I. Bastos, L. B. Oliveira, and J. Goes are with the Department of Electrical 
Engineering, Faculty of Sciences and Technology, and with the Center of 
Technology and Systems (CTS-UNINOVA), Universidade Nova de Lisboa, 
2829-516 Caparica, Portugal (e-mail: {iib14351, l.oliveira}@fct.unl.pt). 

L. B. Oliveira is also with the R&D IC unit of INESC-ID, 1029 Lisbon, 
Portugal. 

J. Goes is also with S3-Group, Madan Parque, Rua dos Inventores, 2825-
182 Caparica, Portugal. 

M. Silva is with INESC-ID Lisboa, Tech. University of Lisbon, 1000 - 029 
Lisbon, Portugal (email: manuel.silva@inesc-id.pt). 

However, they are usually realized with MiM capacitors, 
which require an additional insulator/metal layer, and they use 
poly or/and diffusion resistors, which have large process 
variations and mismatches. 

In this paper our main goal is to design a very low area and 
low-cost LNA, and at the same time obtain less circuit 
variability, by implementing the resistors using MOS transistors 
(MOSFET-only design) [6]. As it will be shown, this approach 
adds a new degree of freedom, which can be used to maximize 
the LNA gain, and, therefore, minimize the circuit NF. 

We start by reviewing the basic amplification stages, 
common-gate (CG) and common-source (CS). For each circuit 
we derive equations, with different levels of approximation, 
for the gain, input matching and noise figure. By comparing 
the results obtained with the different equations with those 
obtained by simulation, we select the level of approximation 
required for the frequency range in which we are interested. 

For the complete LNA (combined CG and CS balun 
topology), we compare the conventional design with resistors, 
and the new MOSFET-only implementation optimized for 
gain and NF. Simulation results of a circuit example designed 
in a standard 130 nm CMOS technology validate the proposed 
methodology. 

This paper is organized as follows. In section II we derive 
the equations for the basic CG and CS stages. In section III we 
present simulation results for the conventional LNA with 
resistors, which confirm the theory. In Section IV we present 
the MOSFET-only LNA and we describe the optimization of 
gain and NF. We compare performance of this LNA with 
others in the literature. Finally, a discussion and some 
conclusions are given in Section V. 

II. COMMON-GATE AND COMMON-SOURCE STAGES 
Figs. 1 and 2 show, respectively, the CG and CS stages, 

normally employed in RC LNAs. We derive equations using 
three different levels of approximation, denoted by a, b, and c: 
a - transistors’ complete model including the parasitic 
capacitances; b - low frequency approximation; c - low-
frequency approximation neglecting the transistors’ output 
resistance. 

A. Common-Gate Stage 
In the equations below gm1 and gmb1 are the transistor’s 

transconductance and body effect transconductance, 
respectively, and ro1 is the transistor’s output resistance. The 
capacitance CS represents the source-bulk and source-gate 
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capacitances and CL the drain-bulk and drain-gate capacitance. 
Rs is the signal source resistance and R1 is the load resistance. 

 
Figure 1.  Common-Gate Stage. 
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2) Input  Impedance  
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3) Noise Figure 
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where k is the Boltzmann constant cox is the oxide gate 
capacitance per unit area, W1 and L1 are the transistor 
channel’s width and length, respectively, T is the absolute 
temperature in Kelvin, � is the excess noise factor, kf and �f 
are intrinsic process parameters, which depends on the size of 
the MOSFET transistors [7, 8]. 

B. Common Source Stage 

 
Figure 2.  Common-Source Stage. 

In the following equations gm2 and ro2 are the transistor’s 
transconductance and output impedance. The capacitances 
Cgs2, Cgd2, and Cdb2 are the gate-source, gate-drain and drain-
bulk capacitances, respectively. R2 is the load resistor. 

1) Gain 
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2) Input Impedance 
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3) Noise Figure 
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III. LNA 
In the design of a wideband LNA there is an important 

choice to be made. A single-ended input simplifies the 
connection to the antenna and RF filters (they are usually 
single-ended) and avoids the need of a balun for the single to 
differential conversion (the balun usually has high loss and 
degrades the NF significantly). A differential input leads to 
reduced harmonic distortion and to better power supply and 
substrate noise rejection.  

In this paper we study a single-ended input LNA (Fig. 3), 
which combines the balun and LNA functionalities in order to 
obtain a simple and low cost LNA (trying to get the best of the 
two above described approaches).  

We obtain a low noise figure LNA (NF < 3 dB), since the 
thermal noise of M1 is cancelled out. The noise produced by 
M1 appears in phase at the two outputs, while the signals are in 
opposition. Thus, we double the gain and cancel the noise. The 
gain matching of the two stages is critical: we need the same 
gain to maximize the circuit performance. 
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Figure 3.  Balun LNA with noise canceling [9]. 

1) Input Impedance 
 

The LNA input impedance is the parallel of those of the CG 
and CS stages,  
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If it is assumed that the CS input impedance is very high,  

 �� %DE�� � �� ���� (8) 

and if the low frequency approximation is considered (2b),  
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2) Gain 
 

Since the output signal is differential, and vout1 and vout2 are 
the CG and CS outputs, the differential gain is given by    

  ��%DE�� � ������ B ���$����� �����

and if the low frequencies approximations (1b) and (4b) are 
used, 
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Assuming a infinite transistor’s output impedance we can 
simplify (11) into, 

� AvLNA_c = 
��� � �������+��<�<� �����

To achieve noise cancellation and balun operation 
(conversion of a single-ended input to a differential output) the 
CG and CS’s stages gain should be equal. Considering 
ro1(gmb1+gm1) >> 1 and that for the same current and length (L) 
on M1 and M2, their output resistances (ro) are approximately 
equal, and making (gm1+gmb1) = gm2 = gm  and R1=R2=RD, we 
obtain from (11), a fourth approximation denoted by subscript 
d, 

� ��%DE�GH <���I��
����I � �����

3) Noise Figure 
 

Considering the approximations that lead to (13), the 
simplified noise figure is given by, 
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4) Dimensions and Biasing 
 

The LNA is designed for 50 ' input impedance using 
equation (2c) as a first approximation and imposing the 
transconductance of M1. M1 is biased with 2 mA. The load 
resistances values are about 200 ' to give a DC output level 
that avoids signal limitation and to keep M1 and M2 in the 
saturation region. The DC voltage VBIAS is used to adjust the 
DC current of M2 to the same value as that of M1. The 
dimensions are shown on table I. 

TABLE I.   LNA DESIGN VALUES (CIRCUIT OF FIG. 3) 

 ID 
(mA) 

R 
(�) 

gm 
(mS) 

W 
(μm) 

L 
(μm) 

VBIAS 
(mv) 

VGS 
(mV) 

M1 2 200 24.5 72 0.12 940 515 
M2 2 200 27.2 90 0.12 - 425 

 
5) Simulation Results 

 

To validate the equations obtained previously for the LNA’s 
performance parameters, and to find out the required level of 
approximation, a comparison is made with the simulation 
results.  

The real part of the input impedance (Figs. 4 and 5) remains 
almost constant up to 10 GHz, and the imaginary part starts to 
be significant above 1 GHz, so the input matching must be 
designed carefully for wideband applications. Equation (9) can 
be used for this purpose.  

We confirm by simulations that equations (9) and (11) are 
accurate for our design, as shown in Figs. 4 to 6.  

 

 
Figure 4.  LNA input impedance (real part). 
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Figure 5.  LNA input impedance (imaginary part). 

 
Figure 6.  LNA Gain. 

For the noise figure simulation we have considered 
kf  = 4x10-23 V2Hz  and �f  = 1.2 for the 130 nm technology 
[7,8]. We observe in Fig. 7 that the simulations are in 
accordance with equation (14). 

 
Figure 7.  LNA noise figure. 

IV. MOSFET-ONLY LNA  

A. Initial Design 
In the MOSFET-only LNA (Fig. 8) the load resistors are 

replaced by PMOS transistors (M3, M4) operating in the triode 
region, which are modeled ideally by a resistor between the 
drain and source, 

1 
KLM11�1)FNLM�1 
)O�1
where gds is the channel conductance. To make a comparison 
with the LNA with load resistors, in the initial design, rds is 
dimensioned to have the same resistance value of 200 '. The 
biasing parameters are shown in table II. 

 
Figure 8.  MOSFET-Only LNA 

TABLE II.  MOSFET-ONLY DESIGN VALUES (INITIAL DESIGN) 

 ID 
(mA) 

rds 
(�) 

gm 
(mS) 

W 
(μm) 

L 
(μm) 

VBIAS 
(mv) 

VGS 
(mV) 

M1 2 - 25.38 75.6 0.12 935 507 
M2 2 - 26.73 82.8 0.12 - 427 
M3 2 206.2 2.06 15.3 0.12 - - 
M4 2 208.3 2.09 15.3 0.12 - - 

 
However, once the resistors are replaced by MOSFETs, it 

becomes possible to optimize the initial design, as explained 
in the following.  

B. Optimization Results 
The saturation region is reached when gm is of about the 

same magnitude as gds. A MOS transistor operating in triode 
region can be modeled by a resistor if gds / gm > 10, otherwise 
the transistor should be modeled by a resistance in parallel 
with a current source. In this case we can increase the 
incremental load resistance without increasing the DC voltage 
drop. This allows the gain to be increased with respect to the 
circuit with true resistors. By simulations we find the 
boundary between triode and saturation (Fig. 9) and we obtain 
the gains and the NF as a function of gds (Fig. 10).   
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Figure 9.  Transistor gm (gds) curve. 

 
Figure 10.  LNA gain optimization. 

By inspection of Fig. 10 we find that the optimum operation 
is just before the gain of the two stages becomes unbalanced 
(gds * 3.8 mS), which occurs before the load transistors reach 
saturation.  The circuit parameters are given in table III. 

TABLE III.  MOSFET-ONLY DESIGN VALUES (OPTIMIZED)  

 ID 
(mA) 

rds 
(�) 

gm 
(mS) 

W 
(μm) 

L 
(μm) 

Vbias 
(mv) 

VGS 
(mV) 

M1 2 - 25.23 75.6 0.12 945 513 
M2 2 - 26.74 82.8 0.12 - 432 
M3 2 261.8 2.16 13.5 0.12 - - 
M4 2 266 2.2 13.5 0.12 - - 
 

C. Simulation Results 
1) Pre-Layout Simulation 

In Figs. 11-13, we present the simulation results for our 
MOSFET-only design (initial and optimized) and we compare 
them with the traditional LNA with resistors.  

 
Figure 11.  LNA input impedance. 

The LNA is considered input matched for values below -10 
dB for |S11|, which is achieved in a band of about 8 GHz for 
these designs (Fig. 11) 

 
Figure 12.  LNA Gain. 

 
Figure 13.  LNA Noise Figure. 

The MOSFET-only LNA with optimized gain has an 
improvement of 2 dB over the traditional design, but has less 
bandwidth. Considering the NF, we obtain less than 2 dB from 
200 MHz to 10 GHz (0.5 dB reduction) for the MOSFET-only 
implementation. 
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2)  Layout design and Post-Layout Simulations 
 

The proposed MOSFET-only LNA layout is shown in Fig. 
14, has a die area of 31 x 30.5 μm2. For the layout 
implementation, the MOSFET sizes are adjusted to minimize 
the poly gate resistance, and Vbias is tuned to set the same 
current for M2 and M4. 

 

 
Figure 14.  MOSFET-Only LNA layout. 

The final layout design parameters are listed in table IV. 

TABLE IV.  POST-LAYOUT VALUES 

 ID 
(mA) 

rds 
(�) 

gm 
(mS) 

W 
(μm) 

L 
(μm) 

Vbias 
(mv) 

VGS 
(mV) 

M1 2 - 25.5 80 0.12 925 503 
M2 2 - 27.1 89.6 0.12 - 422 
M3 2 252.4 2.1 12.3 0.12 - - 
M4 2 252.2 2.1 12.3 0.12 - - 
 
The post-layout simulation results for the main LNA 

parameters are shown in Figs. 15-17.  
The post-layout simulations show that the input matching is 

not affected (Fig. 15): in fact there is a slight improvement, 
since the equivalent resistance of the load transistors is closer 
to the initial design value.  

The gain increases, since the tranconductances of M1 and 
M2 increase, and, consequently, the bandwidth decreases  
(Fig. 16).  

The main difference relatively to the pre-layout results is in 
the NF, which increases by approximately 0.5 dB. This is due 
to the thermal noise of M1 not being fully cancelled out 
beyond 1 GHz. This is shown by the frequency response from 
the M1 noise source to the outputs of the two stages, shown in 
Figs. 18 and 19 (the thermal noise due to M1 at the outputs 
should be equal and have the same phase for full cancellation).  

If we adjust the layout to obtain full cancellation, there will 
be mismatches in the gain and DC offsets and, thus, the LNA 
becomes unbalanced. 

 

 
Figure 15.   Input impedance. 

 
Figure 16.  Gain. 

 
Figure 17.  Noise Figure. 
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Figure 18.  Noise transfer from M1 to the outputs of the two stages 

(magnitude). 

 
Figure 19.  Noise transfer from M1 to the outputs of the two stages (phase). 

Comparing the results of our optimized MOSFET-only 
design with those for alternative state-of-the-art inductorless 
LNAs (Table V), we can conclude it has the advantages of 
higher gain and lower NF; the drawbacks are a reduction of 
bandwidth and the increase of the circuit non-linearity 
(reduction of IIP3). 

TABLE V.  LNA COMPARISON 

 Tech. 
(nm) 

Band 
(GHz) 

Gain 
(dB) 

NF 
(dB) 

IIP3 
(dBm) 

Power 
(mW) 

Balun 

[9] 65 0.2-5.2 13-15.6 < 3.5 >0 14 YES 
[10] 90 0.5-8.2 22-25 < 2.6 -4/-16 42 NO 
[11] 90 0.8-6 18-20 < 3.5 >-3.5 12.5 YES 
[12]  
(sim) 

90 0.1-1.9 20.6 < 2.7 10.8 9.6 YES 

[13]  
(sim) 130 0.2-3.8 11.2 < 2.8 -2.7 1.9 YES 

This   
work  
MOS 

130 0.2-5.1 20.2 <2.4 3.1 4.8 YES 

V. DISCUSSION AND CONCLUSIONS 
In this paper we present a MOSFET-only implementation of 

an LNA based on the combination of a common-gate and a 
common-source stage. We derive simple equations for gain, 
input matching, and noise figure, which are validated by 
simulation.  

In MOSFET-only LNAs, the replacement of resistors by 
transistors reduces the area and cost and minimizes the effect 
of process and supply variation and of mismatches [6]. 
Moreover, the LNA gain can be controlled by changing the 
bias of the PMOS transistors that replace the resistors. 

The new approach proposed here adds a new degree of 
freedom, which can be used to optimize the LNA gain and 
minimize the noise figure: we can obtain a higher gain than 
with resistors for the same DC voltage drop. As a drawback, 
this approach increases the distortion (decrease of IIP3). 

Simulation results of a circuit implemented in a 130 nm 
CMOS technology are presented. For comparison, we also 
show the performance of a conventional LNA with resistors. 
Both circuits have the same power consumption of 4.8 mW. 
For the MOSFET-only LNA we obtain a gain improvement of 
2 dB, and a NF below 2.4 dB. 
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